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Abstract—Location trajectories provide valuable insights for
applications from urban planning to pandemic control. How-
ever, mobility data can also reveal sensitive information about
individuals, such as political opinions, religious beliefs, or sexual
orientations. Existing privacy-preserving approaches for publish-
ing this data face a significant utility-privacy trade-off. Releasing
synthetic trajectory data generated through deep learning offers
a promising solution. Due to the trajectories’ sequential nature,
most existing models are based on recurrent neural networks
(RNNs). However, research in generative adversarial networks
(GANs) largely employs convolutional neural networks (CNNs)
for image generation. This discrepancy raises the question of
whether advances in computer vision can be applied to trajectory
generation. In this work, we introduce a Reversible Trajectory-
to-CNN Transformation (RTCT) that adapts trajectories into
a format suitable for CNN-based models. We integrated this
transformation with the well-known DCGAN in a proof-of-
concept (PoC) and evaluated its performance against an RNN-
based trajectory GAN using four metrics across two datasets. The
PoC was superior in capturing spatial distributions compared
to the RNN model but had difficulty replicating sequential and
temporal properties. Although the PoC’s utility is not sufficient
for practical applications, the results demonstrate the transfor-
mation’s potential to facilitate the use of CNNs for trajectory
generation, opening up avenues for future research. To support
continued research, all source code has been made available
under an open-source license.

Index Terms—Trajectory Privacy, Differential Privacy, Loca-
tion Privacy, Deep Learning, Generative Adversarial Networks
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I. INTRODUCTION

Due to the omnipresence of sensor-equipped devices like
smartphones, large quantities of location data are collected
daily. These trajectory datasets offer the potential for various
use cases, such as public transport optimisation and pandemic
control. However, location data yields severe privacy implica-
tions as it allows the re-identification of individuals [1], [2]
and the inference of personal attributes [3], [4]. To highlight
the high information content of location traces, De Montjoye
et al. [1] managed to identify 95% of users in a mobile phone
dataset based on four locations only. Moreover, researchers
determined Islamic taxi drivers in an anonymised dataset by
correlating the mandatory prayer times with their breaks [5].

Researchers have proposed various methods for the privacy-
preserving release of trajectory datasets [3], [6], [7], [8]. These
methods focus on syntactic privacy, such as k-anonymity [9],

and semantic privacy, notably Differential Privacy (DP) [10].
DP has become the de facto standard due to its strong formal
guarantees. However, these methods involve a privacy-utility
trade-off, requiring data perturbation to ensure privacy [11].
Current approaches often fail to maintain sufficient utility
in the protected data for effective analysis [12], [13], [14].
Inappropriate protection can also lead to structural anomalies,
such as cars not adhering to roads or ships traversing land [15],
[16], [17], [8]. These anomalies may facilitate reconstruction
attacks, thus reducing the achieved privacy level [18], [16].

For these reasons, Liu et al. [19] proposed using Generative
Adversarial Networks (GANs) to generate synthetic trajectory
datasets. The Deep Learning (DL) model retains the original
dataset’s key characteristics but produces inherently private,
synthetic data. Models such as LSTM-TrajGAN [12] show the
potential utility of this method. Yet, these solutions lack strong
privacy guarantees. There are risks of the model memorising
and replicating real trajectories with minimal alterations. To
guarantee that the model does not remember training data,
the usage of DP-SGD [20] has been proposed [21]. However,
LSTM-TrajGAN uses a real trajectory as input, unlike standard
GAN models like Deep Convolutional Generative Adversarial
Network (DCGAN) [22] that use Gaussian noise. DP-SGD
only secures training data, thus it is ineffective for architectures
that rely on real data during generation [21].

To incorporate DP-SGD in trajectory GANs, a noise-only
model is required. As trajectories represent sequences of loca-
tions, Recurrent Neural Network (RNN)-based models are the
obvious choice. However, most GAN research has centred on
computer vision, focusing on Convolutional Neural Network
(CNN)-based models. RNN-based GANs often train less stably
than CNN models and struggle with convergence [21]. This
raises the question of whether a CNN-based architecture could
be utilised for trajectory generation.

In other sequential domains, the move from RNN-
based models to CNN-based models showed success. Wave-
GAN [23] adapts DCGAN for audio data generation, em-
ploying Conv1D layers and outperforming an RNN-based
model. Similarly, PAC-GAN [24] utilises a CNN-GAN for the
generation of network traffic packets where most related work
had used RNNs. These examples highlight the potential of
CNN-based architecture’s in sequential domains.

This work introduces a Reversible Trajectory-to-CNN
Transformations (RTCT) to facilitate the use of CNN-based
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architectures for trajectory datasets. We demonstrate its utility
by integrating it with DCGAN [22] in a Proof-of-Concept
(PoC) implementation. This study primarily focuses on the
feasibility of RTCT with a CNN-based model; we do not
optimise DCGAN for trajectory generation but leave this task
for future work. We evaluate on two real-world datasets,
Foursquare NYC [25] (FS-NYC) [25] and Geolife [26] with
four metrics: 1) The widely used Hausdorff Distance (HD),
and 2) the sliced Wasserstein Distance (WD) assess the spatial
distribution, 3) Total Travelled Distance (TTD) the sequential
properties, and 4) a novel metric, Time Reversal Ratio (TRR),
for assesses time properties. Moreover, we qualitatively anal-
yse the generated trajectories by plotting them.

Our PoC is benchmarked against Noise-TrajGAN
(NTG) [21], a noise-only input variant of the State Of
The Art (SOTA) model LSTM-TrajGAN [12]. NTG was
selected despite its inferior performance due to LSTM-
TrajGAN’s incompatibility with DP-SGD. After establishing
a baseline comparison between our PoC and NTG, we
proceeded to train both models with DP-SGD.

The evaluation demonstrates that our PoC more effectively
captures the distribution of points within a trajectory dataset
compared to the RNN model. However, in terms of spatial
and temporal properties measured through TTD and TRR,
respectively, NTG outperforms our PoC. Despite these results,
the overall quality of the trajectories generated by both models
does not yet meet the requirements for downstream applica-
tions. The DP version of our PoC achieves results comparable
to NTG. However, qualitative analysis suggests that the noise
added by DP-SGD significantly impacts the model. The DP
version of NTG yields surprisingly good quantitative results.
Yet, visual inspection does not confirm effective learning.
While the results on a toy dataset were promising and showed
the feasibility of integration with DP-SGD, significant future
work is required to establish a useful DP model.

The evaluation results show that the PoC cannot reach
the utility provided by (non-private) SOTA models. Yet, they
highlight that the proposed transformation enables the use of
CNN-based models in trajectory generation. Future research
could explore tailored GAN designs to enhance trajectory
generation. The ultimate goal is the development of a stable
CNN-based GAN that integrates with DP-SGD for formal
privacy guarantees. Concretely, this paper advances the field
of trajectory privacy in the following ways (See Section V):

1) We introduce a Reversible Trajectory-to-CNN Transfor-
mations (RTCT) enabling the usage of CNN models for
trajectory generation. (see Section VI)

2) We integrate this transformation with the well-known
DCGAN [22] architecture in a PoC (see Section VII).

3) We evaluate our PoC on two real-world datasets, FS-
NYC [25] and Geolife [26], and compare it to the RNN-
based NTG model. (see Section IX).

4) We integrate both models with DP-SGD and evaluate the
privatised versions (see Section VIII).

5) We publicly share our source code to facilitate repro-

ducibility and future research1.
This paper is organised as follows: Section II provides

background on trajectory datasets, DP, and GANs. Evaluation
metrics are detailed in Section III. Section IV reviews related
work. Our objectives and contributions are outlined in Sec-
tion V. The design of the RTCT is described in Section VI.
Section VIII discusses the integration of DP-SGD. Our ap-
proach is evaluated in Section IX, while Section X addresses
the results and potential future research directions. The paper
concludes with Section XI.

II. BACKGROUND

This section lays out the background knowledge for the
remainder of this paper. Section II-A defines a trajectory
dataset. Section II-B provides an overview of DP, emphasising
its application in deep learning via DP-SGD. In Section II-C,
we explore Generative Adversarial Networks. Section II-D
provides further details on the DCGAN architecture.

A. Trajectory Datasets

A trajectory dataset consists of a number of trajectories:
DT = {T1, . . . , Tn}. Each trajectory Ti itself represents an
ordered sequence of locations Ti = (li1, . . . , lin), where each
location consists of multiple attributes. We assume the minimal
information content of a location to be spatial coordinates such
as latitude and longitude, i.e., lij = (latij , lonij). However,
locations might be enriched with additional information. For
instance, some datasets record altitude [26], while others con-
tain temporal information [26], [25], or semantic information
such as Point of Interests (POIs), i.e., the type of location.
Within this work, we assume spatial details to be minimally
present. Temporal and semantic information are optional and
can extend all proposed approaches.

B. Differential Privacy

Differential Privacy (DP) [10] is a rigorous semantic pri-
vacy notion. In contrast to syntactic privacy notions like k-
Anonymity, DP offers protection against any adversary in-
dependent of their background knowledge. DP is founded
on the principle of plausible deniability, i.e., participation
in a query should not (significantly) affect the outcome.
Accordingly, participation in a dataset does not harm one’s
privacy. Mathematically [10]:

Definition 1 (Differential Privacy): A mechanism K pro-
vides (ε, δ)-differential privacy if for all neighbouring datasets
D1 and D2, and all S ⊆ Range(K) holds

P[K(D1) ∈ S] ≤ eε × P[K(D2) ∈ S] + δ (1)

In the original definition, neighbouring means that dataset D2

can be obtained from D1 by removing all user records u from
the dataset: D2 = D1\{rxi|x = u}. In practice, different
neighbourhood definitions, also called unit of privacy [21],
are deployed. Most commonly, especially in machine learning,
instance-level DP is used, which assumes that each user
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contributes exactly one record. The primary privacy parameter,
ε, typically ranges from 0.01 to 10 in general contexts [27], but
may be higher in DL [20]. The parameter δ, representing the
accepted failure probability, is often set at δ = 1

n for n records
to ensure each record’s protection, although some scenarios
require lower values [28]. To meet these privacy requirements,
DP integrates noise addition through mechanisms such as
Laplace, Gaussian, or exponential [10], [29].
Differential Private Machine Learning. Deep learning
models often rely on sensitive data for training, raising privacy
concerns. Consider a DL model that targets the detection of
diseases based on real medical data. It must be impossible
to derive training data from the model’s outputs or from
the model’s parameters in case the trained model is shared.
However, different attacks [30] demonstrate the privacy risk of
deep learning models. To counteract this, differential privacy
has been integrated into DL model training [31], [20].
Differentially Private Stochastic Gradient Descent (DP-
SGD) [31] is the prevalent method for achieving DP in deep
learning [20]. To prevent privacy leakage, the influence of
training samples on the model’s parameters is bounded. The
first step in DP-SGD involves clipping the gradients to a norm
C, which limits the impact of each training sample. Next,
Gaussian noise is added to these clipped gradients, determined
by the norm C and a noise multiplier σ. Finally, privacy
accounting monitors the privacy budget ε during training to
ensure the model meets (ε, δ)-DP upon completion.

However, DP-SGD only safeguards training data’s influence
on model parameters. Data used during prediction or genera-
tion in generative models remains unprotected. This limitation
underpins our approach to designing a generative model that
relies solely on noise during generation, as suggested in [21].
While privacy libraries simplify DP-SGD usage, guaranteeing
privacy for models like LSTM-TrajGAN, which require real
data during generation, remains a challenge (ref. Section I).

C. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [32] are a DL
algorithm used in unsupervised machine learning. These net-
works consist of two main components: a generator (G) and
a discriminator (D). G generates data from random noise,
aiming to mimic real data samples. D assesses whether a
sample is real or produced by G. This interaction forms a
competitive framework, described by the adversarial loss:

min
G

max
D

Ex∼pdata [logD(x)] +Ez∼pz
[log(1−D(G(z)))] (2)

In this equation, pdata is the real data distribution, and pz is
the distribution of the noise input for G. The training process
refines G and D until G can produce data almost identical to
real samples. One advantage of traditional GANs architecture
in regard to privacy is that the generator receives only random
noise as an input during generation. Real data samples in
GANs are necessary only during the training phase. This
characteristic facilitates seamless integration with DP-SGD. In
contrast, accessing the real data during generation can lead to

privacy leakage [21]. Building on this understanding of GANs,
we explore the well-known DCGAN architecture next.

D. DCGAN

Most current GAN models are loosely based on DC-
GAN [22], owing to its effectiveness in generating valid
synthetic data across various applications [33]. DCGAN is a
GAN utilising convolutional layers in both its generator and
discriminator that was developed for image generation. Its five
key architectural features include:

• Strided and transposed convolutions for downsampling
and upsampling, replacing pooling layers.

• Batch normalisation in both generator and discriminator.
• ReLU activation in the generator, except for tanh in the

output layer. Note that we used sigmoid for the output
layer due to our normalisation to [0; 1].

• LeakyReLU activation in the discriminator, except for
sigmoid in the output layer.

• Elimination of Fully Connected (FC) hidden layers.
These modifications lead to DCGAN’s training stability and
broad applicability.

III. METRICS

This section outlines the metrics for our utility evaluation.
We first discuss two metrics for evaluating spatial distribution:
HD (Section III-A) and WD (Section III-B). We then describe
TTD (Section III-C) for sequential quality and introduce the
novel TRR (Section III-D) to assess temporal properties.

A. Hausdorff Distance

The Hausdorff Distance (HD) is a distance metric that quan-
tifies the similarity between two sets of points. It calculates
the maximum distance from a point in one set to the nearest
point in the other set. Formally, for two point sets A,B and
a distance function d [34]:

HD(A,B) = max

{
max
a∈A

min
b∈B

d(a, b), max
b∈B

min
a∈A

d(a, b)

}
(3)

This metric is widely used for evaluating spatial utility in
trajectory protection and generation [35], [36], [37], [12],
[14]. We generate trajectories until their combined point count
matches the real test set’s point count. Then, we compute
the HD between both sets. However, the HD is significantly
affected by outliers [21], such that we also use the WD.

B. Wasserstein Distance

The HD is prevalent in trajectory comparison but is highly
susceptible to outliers, where a single misplaced point can lead
to a drastically different HD. To address this, we compare
the point distributions directly as proposed in [21]. A key
aspect is assessing if the generated data mimics the real data’s
distribution, such as urban concentration versus rural sparsity.
Intuitively, the Wasserstein Distance (WD) treats distributions
as piles of dirt, measuring how much ’dirt’ must be shifted
to transform one distribution into another. Hence, this metric
is also known as Earth Mover’s Distance (EMD). However,



standard WD is limited to one-dimensional data, while spa-
tial trajectories involve (at least) two dimensions (latitude
and longitude). Therefore, we opt for the Sliced Wasserstein
Distance (SWD), suitable for two-dimensional data. Given
SWD’s computational overhead, we randomly draw 10 000
locations from both the real and the generated dataset and
compute the SWD between those sets. Since these two metrics
only evaluate the point distribution, we use the subsequently
discussed TTD for assessing the sequential characteristics.

C. Total Travelled Distance

The Total Travelled Distance (TTD) represents the
length of the entire trajectory. For a trajectory t =
((x1, y1), (x2, y2), . . . , (xn, yn)), the TTD is defined as:

TTD(t) =

n−1∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2 (4)

The TTD is calculated by computing the total travelled
distance for each trajectory in both the real and generated
datasets, creating two sets of travel distances. We then use
the WD to compare these sets by measuring the discrepancy
between their underlying distributions, quantifying how similar
the generated data is to the real data regarding travel distances.

D. Time Reversal Ratio

We identified a lack of metrics assessing the quality of
the temporal features in generated trajectories. To address
this gap, we developed a new metric, Time Reversal Ratio
(TRR), which assesses how accurately a trajectory represents
the flow of time. The goal of TRR is to ensure that generated
trajectories display minimal instances where time appears to
move backwards, mirroring the consistent forward progression
of time in real-life trajectories. Formally, for a trajectory t =
((x1, y1, t1), (x2, y2, t2), . . . , (xn, yn, tn)) with timestamps ti,
TRR is defined as:

TRR =

∑n−1
i=1 I(ti > ti+1)

n− 1
(5)

Here, I is the indicator function, equalling 1 if ti > ti+1

(indicating a regression) and 0 otherwise. While minor errors
in location points are tolerable for trajectory utility, generated
trajectories exhibiting backward time movement are readily
identifiable as synthetic. Therefore, optimising against such
temporal inconsistencies is essential to enhance realism.

IV. RELATED WORK

Numerous privacy-preserving mechanisms for trajectory
data exist. Jin et al. [7] survey various approaches, including
those based on k-Anonymity, while Miranda-Pascual et al. [8]
focus on DP mechanisms. Despite significant progress, a
privacy-utility trade-off persists [12], [13], [14]. k-Anonymity
offers practical privacy but lacks robust formal guarantees.
Conversely, DP mechanisms cause significant utility loss.
Generating synthetic trajectories via deep learning emerged

as a potential alternative [19]. Notable implementations in-
clude the aforementioned LSTM-TrajGAN [12]. Numerous
other DL-based generative models have been proposed [38],
[39], [40], [41], [42], [43], [44], [45] and discussed in a
recent SoK [21]. Yet, none of the existing deep learning-
based generative models can provide strong formal privacy
guarantees, such as DP [21]. More recent approaches not
considered in this SoK, such as DiffTraj [46], improve utility
further but still do not offer formal privacy guarantees and
rely on the inherent privacy of generation instead. However,
generated data can leak information such formal guarantees
remain desirable [21], [47], [48]. Moreover, Buchholz et
al. [21] mention that Conv1D layers appear to be superior for
capturing the spatial distribution of trajectories compared to
RNN-based models. This motivates our investigation of CNN-
based generative models.

LSTM-TrajGAN [12], [49] represents the most cited deep
learning-based generative trajectory model. The model consists
of a generator and discriminator with similar architectures.
Real trajectories are normalised and encoded, combining lo-
cation, temporal, and semantic features. The generator embeds
and fuses these encodings with noise into latent represen-
tations. This representation is processed by an Long Short-
Term Memory (LSTM) layer, generating synthetic trajectories
with multiple features. Unlike the classic GAN architecture
(Section II-C), where the generator only receives Gaussian
noise as input, LSTM-TrajGAN uses real trajectories as input
during generation. As pointed out in [21], this has privacy
implications and might lead to the generated trajectories
leaking information about the input trajectories. Moreover, this
architecture makes it challenging to integrate DP guarantees.
Therefore, we use a variant of LSTM-TrajGAN, named Noise-
TrajGAN (NTG) [21], as our evaluation baseline. Unlike
the original, NTG omits trajectory inputs during generation.
Its architecture mirrors LSTM-TrajGAN’s, with the primary
difference being that its generator uses a noise vector alone.
We made the choice to use NTG for two reasons. First, NTG
can be trained with DP guarantees by using DP-SGD (ref.
Section II-B, which allows us two compare a DP version
of our PoC to DP-NTG. Second, the architecture is more
similar to DCGAN, which also uses noise-only input, such
that the results focus more on the actual research question of
comparing RNN with CNN-based models.

Sequence Generation Based on CNN. The preference for
RNNs in trajectory generation stems from their suitability for
sequential data. Yet, CNN-based models have demonstrated
effectiveness in sequential tasks. For example, WaveGAN [23],
uses Conv1D for audio generation, and PAC-GAN [24], em-
ploys a 2D CNN for network traffic generation.
WaveGAN, adapts DCGAN (ref. Section II-D) to 1D data
by using Conv1D layers for the generation of synthetic audio
waves [23]. Despite the sequential nature of audio waves, this
model produces high-quality audio suitable for multimedia
applications. WaveGAN surpasses earlier models like Sam-
pleRNN [50] and WaveNET [51], highlighting the effective-
ness of Conv1D layers. The model exploits the periodicity of



sound waves, which the sliding convolutional kernel captures.
While trajectories contain regular patterns, they do not exhibit
the same periodicity, limiting the model’s applicability [21].
PAC-GAN [24] employs a 2D CNN-based GAN to generate
synthetic network traffic packets. This approach proposes a
transformation algorithm that converts hex-encoded packets
into 2D matrices compatible with CNNs. This representation
yields an up to 99% success rate for individual traffic type
generations while an initial encoding only reached up to 30%.
This outcome highlights the critical role of data representation
in model performance. These examples motivate the design of
a transformation enabling the usage of CNN-based models for
trajectory generation, opening avenues for future research.

V. PROBLEM STATEMENT

As noted in Section I, location trajectories are valuable
for analyses but contain sensitive information. Related work
indicates a limiting privacy-utility trade-off in traditional pro-
tection methods. Therefore, the generation of synthetic data
represents a promising alternative. However, while achieving
high utility, current models struggle to provide rigid privacy
guarantees [21]. Moreover, while most current methods rely on
RNNs, CNN-based architectures have shown success in other
sequential domains, and initial experiments with convolutional
layers for trajectory generation yield promising results [21].
This leads to our research question: Can a CNN-based GAN
produce high-quality synthetic trajectories? To the best of our
knowledge, this is the first attempt to utilise a fully CNN-based
architecture for trajectory generation. Our primary research
question is subdivided into four sub-goals:
G1: Transformation: Develop a Reversible Trajectory-to-
CNN Transformations (RTCT) algorithm that transforms lo-
cation trajectories into CNN-compatible inputs. This transfor-
mation represents the main contribution of this research.
G2: Integration: Integrate our transformation with a standard
CNN-based GAN, specifically DCGAN (ref. Section II-D), to
assess its performance in a PoC. We have chosen an estab-
lished GAN model to highlight the flexibility and potential of
our proposed transformation. The development of a specialised
CNN-based GAN tailored for trajectory synthesis remains an
objective for future work.
G3: Differential Privacy: Apply DP-SGD to both our model
and the considered baseline model NTG to determine the
impact of formal privacy guarantees on model performance.
To the best of our knowledge, this is the first work using DP-
SGD for privacy-preserving trajectory generation, providing
formal privacy guarantees.
G4: Evaluation: Evaluate the potential of CNN-based GANs
for trajectory generation by conducting an extensive evaluation
on two real-world datasets, FS-NYC and Geolife, with the four
metrics outlined in Section III. Additionally, we compare our
model’s performance with the RNN-based model NTG, de-
scribed in Section IV. Moreover, we compare the performance
of both models trained with DP-SGD to measure the impact
of formal privacy guarantees on utility.

VI. REVERSIBLE TRANSFORMATION DESIGN

To enable the usage of CNN-based GANs for trajectory
generation, we propose a Reversible Trajectory-to-CNN Trans-
formations (RTCT) addressing G1: Transformation. This
transformation, depicted in Figure 1, comprises:

1) Normalising the trajectories’ latitude, longitude, day and
hour values (Section VI-A).

2) Inserting these normalised values into a 12×12×3 matrix
(Section VI-B).

3) Upsampling the resulting matrix to 24 × 24 × 3 (Sec-
tion VI-B).

After generation, the synthetic trajectories are reverted into
sequential form, as detailed in Figure 2 and Section VI-C.
Additionally, we demonstrate the potential of using CNN-
based models for trajectory generation by integrating our trans-
formation with DCGAN [22] into a Proof-of-Concept (PoC)
implementation, addressing G2: Integration (Section VII).

A. Normalisation

Normalisation adjusts dataset features to a common scale,
which is essential for deep learning. Typically, data is nor-
malised to the range [−1; 1] or [0; 1] using techniques such
as mean and standard deviation, and tanh normalisation [52].
We employ min-max normalisation, which is reversible and
scales data features into the range [0; 1], making it ideal for
the denormalisation of generated trajectories. For a feature
f , with minimum value min and maximum value max, the
normalisation value v is defined as:

v =
f −min

max−min
(6)

This normalisation method is applied to all features before
using the trajectories for model training.
Choice of max and min. Selecting appropriate maximum
and minimum values for each feature is crucial for effective
normalisation. Initially, we used global extremes for latitude
and longitude: −180◦ to 180◦ for longitude and −90◦ to 90◦

for latitude. This method proved too coarse, as slight changes
in coordinates, which could represent significant distances,
were not adequately captured. For example, a change from
(lat, lon) = (40, 70) to (40.0001, 70) represents a distance
of approx. 10 meters but is negligible in global normalisation.
Moreover, the values have to be dataset-independent to prevent
privacy leakage. Finally, we opted for geographical constraints
tailored to the datasets, such as a ring road for a Beijing dataset
or a bounding box aligned with a city’s official boundaries.
This approach does not access the dataset but uses public
knowledge, thus preventing information leakage. For time-
based features, we applied fixed maxima and minima, 0-6 for
days and 0-23 for hours, aligning with the natural constraints
of these temporal features. This ensures sufficient variability
for the model to detect patterns effectively.

B. Trajectory Encoding

Our trajectory encoding underwent two main iterations.
Initially, we used an asymmetrical matrix as a ”strip” to



Fig. 1. RTCT: A trajectory’s latitude, longitude, day, and hour values are normalised into a 12× 12 matrix and upscaled to 24× 24× 4 for DCGAN.

store trajectory information, but this format yielded unsat-
isfactory results. To overcome these limitations, we evolved
our approach into a two-dimensional square convolution with
multiple channels and clustered features. The final encoding
scheme is depicted in Figure 1.
Strip Encoding Our initial encoding used a 144 × 4 strip-
matrix, inspired by WaveGAN’s audio encoding (see Sec-
tion IV). The matrix’s first dimension, 144, represents the
maximum trajectory length, which depends on the dataset. The
second dimension captures features, here: latitude, longitude,
day, and hour. Early tests showed the model’s learning was
sub-optimal, possibly due to the lack of consistent periodicity
in trajectories compared to audio waves. Thus, we adopted a
two-dimensional representation for each feature and a replica-
tion strategy to reduce the effect of minor perturbations.
Multi-Dimensional Square Convolution Encoding Our final
encoding scheme evolved into a 12× 12× 4 matrix, shown in
Figure 1. It accommodates 144 trajectory points, with each cell
holding four separate feature channels. This format generalises
to trajectories with maximum length x and y features, resulting
in a matrix size of ⌈

√
x⌉ × ⌈

√
x⌉ × y. The main drawback

of CNN-based models over RNN-based ones is the need to
pre-define an upper trajectory length. To mitigate perturbation
effects, we upscaled our matrix to 24 × 24 × 4, replicating
features into 3 additional cells [53].

C. Reversion

The generator outputs synthetic trajectories in the intro-
duced encoded format. Therefore, the reversibility of this
encoding into trajectories is essential. Figure 2 illustrates the
reversion process. Starting with a synthetic trajectory encoding
of shape 24× 24× 4, we downsample it to 12× 12× 4. The
downsampling divides the matrix into 2× 2 squares, selecting
one cell per square using the nearest-neighbour method. After
downsampling, values v are denormalised into the feature f
using the rearranged normalisation Equation 6:

f = v × (max−min) +min (7)

Fig. 2. Reversion: DCGAN generates a 24 × 24 × 4 trajectory, which is
downsampled to 12×12×4 and denormalised to retrieve the original format.

This reversion is applied to each cell. The features are then
concatenated to revert to the original trajectory format.

VII. DCGAN INTEGRATION

As highlighted in Section II-D, DCGAN is a popular GAN
choice due to its ease of use and versatility. Therefore, we
integrated DCGAN with RTCT as a Proof-of-Concept2. Al-
though DCGAN was primarily designed for image generation
and may not be ideal for trajectories, its adaptability makes
it suitable for our PoC addressing G2: Integration, as this
work focuses on transformation rather than the generative
model itself. In the following, we provide details on the
implementation and optimisation strategies.

A. Implementation

We based our PoC on the DCGAN implementation from the
PyTorch GAN repository [54]. PyTorch data loaders facilitate
dynamic access to data, crucial for training. Our transforma-
tion is embedded in the data loader, managing loading raw
trajectories from files to the encoding with RTCT.
Padding and Masking. As described in Section VI-B, CNNs
require constant length inputs, unlike RNNs. Therefore, we
pad trajectories shorter than the upper limit of 144 points
using 0-post padding. Masks based on the trajectories’ original
lengths are generated, with a vector for a trajectory of length
l comprising l ones and 144 − l zeros. When applied to
trajectories, this masking excludes zero-padding from affecting
computations within the computational graph.

B. Optimising DCGAN

To enhance the baseline PyTorch DCGAN performance, we
employed several optimisation strategies:

1) Implementing Two Time Update Rule (TTUR) [55].
2) Using a learning rate scheduler [56].
3) Applying label smoothing [57].
The Two Time Update Rule (TTUR) [55] refers to

using a lower learning rate for the generator than for the
discriminator. This optimisation facilitates the discriminator
converging to a local minimum while the generator progresses
more slowly [55]. We integrated TTUR through a generator
factor that reduces the generator’s learning rate to one-tenth
of the discriminator’s learning rate.

2The implementation is available at https://github.com/jesse-merhi/
CNN-TRAJGAN

https://github.com/jesse-merhi/CNN-TRAJGAN
https://github.com/jesse-merhi/CNN-TRAJGAN


Learning rate schedulers are widely used for optimising
performance in deep learning [56]. While adaptive rates in
optimisers like the Adam Optimiser [58] are common, we
observed improved results by manually reducing the learning
rates of both the discriminator and generator at specific mile-
stones. A learning rate scheduler speeds up initial learning and
helps find a local minimum later, avoiding overstepping.

Label smoothing, our final optimisation, modifies trajectory
labels to reduce overfitting [57]. We adjusted valid labels to
0.9 and fake labels to 0.1. This reduces the discriminator’s
confidence and results in better gradients during training,
facilitating a smoother and more stable learning process [57].

VIII. DP-SGD

As discussed in Section IV, the core limitation of existing
deep learning models for trajectory generation are the missing
formal privacy guarantees. Today’s de-facto standard is DP
described in Section II-B. Despite efforts to deploy DP for
trajectory generation, studies [8], [21] show frequent mis-
application, affecting the integrity of the privacy guarantees.
Thus, [21] recommends using the established method of DP-
SGD, which ensures instance-level DP if each training sample
corresponds to one trajectory (see Section II-B).

To address G3: Differential Privacy, we implemented DP-
SGD for our PoC and the baseline NTG (ref. Section IX-B)
to evaluate the impact of DP and allow for comparative
analysis. We employed the Opacus [59] library to integrate
DP-SGD due to its straightforward interface. This established
framework helps us avoid the common pitfalls of custom
DP implementations, which have compromised the integrity
of privacy guarantees in other studies [21], [8]. Any layers
incompatible with DP-SGD were automatically replaced by
Opacus’ model fixer, in particular, DCGAN’s BatchNorm
layers were replaced by GroupNorm. Typically, DP-SGD is
applied to the discriminator in a GAN [48]. This approach
ensures that the generator also adheres to DP through the
post-processing property of DP since it only receives indirect
data access via feedback from the discriminator. However,
we aimed at enabling usage of the WGAN-LP loss, which
is reported to yield better results than the standard adversarial
loss [60], [61], [21]. Opacus does not support DP-SGD for
models trained with gradient penalty at this time. Moreover,
the discriminator is updated more frequently than the generator
when using WGAN [62] (usually ≈ 5× as often), such that
adding noise to the discriminator would result in more noise
being added by DP-SGD. Therefore, we decided to train
the generator with DP-SGD instead, i.e., the noise is added
to the generator’s gradients instead of the discriminator’s
gradients. Utilising the MNIST Sequential (MNIST-Seq) as
a toy dataset [21], we confirmed that the baseline model NTG
could produce samples of comparable quality with DP-SGD
applied to the generator as it did without DP-SGD. Due to a
bug in the underlying framework, we had to use the standard
WGAN loss instead of WGAN-LP for the DP version of
the baseline model NTG. The DP version of our PoC was
successfully trained with WGAN-LP.

To minimise the performance degradation caused by the
noise from DP-SGD, we adhered to the guidelines from
Google’s DP-fy ML paper [20]. We set ε = 10.0, considered
the upper limit for realistic privacy in deep learning [20]. For a
dataset with n samples, we adopted δ = 1/n1.1 as commonly
recommended [28], [20]. Compared to the non-DP model, we
increase both the batch size b and the number of epochs e
by a factor F = 10 to keep the number of steps (s = e · n

b )
constant but increase the batch size which reduces the noise
that is added [20]. We selected a gradient clipping norm of
C = 0.1. Due to time constraints and the high computational
cost of DP-SGD, we could not complete a full ClipSearch [20]
and learning rate sweep, but we verified that these heuristics
yield good results on the MNIST-Seq dataset.

IX. EVALUATION

This chapter addresses goal G4: Evaluation. Section IX-A
details the datasets used and their preprocessing methods.
Section IX-B introduces the baseline model, NTG. Subse-
quent sections discuss evaluation results: Section IX-C cov-
ers parameter choices, Section IX-D outlines the hardware
setup, Section IX-E presents results from standard models,
Section IX-F focuses on outcomes from training with DP-
SGD, and Section IX-G provides a qualitative analysis.

A. Datasets

To demonstrate the generalisability of our approach, we
evaluate our implementation on two different datasets. First,
the FS-NYC dataset [25], used as a benchmark in LSTM-
TrajGAN [12], comprises 3, 079 trajectories with a maximum
of 144 locations each, primarily within New York City’s
bounds3. We use the dataset as provided in [49] without
further preprocessing. Second, the Geolife dataset [26] covers
a larger geographical area around Beijing. Moreover, 91% of
the dataset’s trajectory have a sampling rate of 1–5 s or 5–
10m [26] yielding more fine granular trajectories. For con-
sistency with FS-NYC, we constrained Geolife’s data within
the fourth ring road of Beijing4. We capped trajectories at 144
locations and discarded those with fewer than 96 locations
to prevent extensive padding. This preprocessing reduced the
available trajectories from 17 621 to 7270.

B. Baseline Model

LSTM-TrajGAN, as highlighted in Section IV, is a leading
generative model for trajectories. Its use of real trajectory
inputs during generation, however, raises privacy concerns
and complicates the provision of DP guarantees [21]. To
address these issues, we selected the noise-only variant NTG,
introduced in [21], for its compatibility with DP-SGD and its
architectural similarity to our PoC, ensuring a fair comparison.
Despite NTG’s inferior performance compared to LSTM-
TrajGAN, it has the advantage that it integrates well with
DP-SGD, an essential feature for our comparative analysis.

3Bounding Box = (40.6811,−74.0785) to (40.8411,−73.8585)
4Bounding Box = (39.8279, 116.2676) to (39.9877, 116.4857)



Fig. 3. On Geolife [26], DCGAN significantly outperforms NTG for the spatial metrics, i.e., the model can capture the point distribution better. However,
the RNN-based NTG excels at capturing the distance between consecutive points (TTD). DCGAN struggles to generate sensible timestamps (TRR).

We extended the model by training with DP-SGD to facilitate
comparisons of the DP versions with our PoC.
Hyperparameters were generally maintained as per [21].
We trained NTG using the WGAN-LP loss, which has been
reported to yield the best outcomes [21]. For the DP version
of the model, we had to revert to the standard WGAN loss
due to an error caused by the combination of Opacus with
the gradient penalty. Adjustments were made to the learning
rate, set at 1e−4, an increased batch size of 64 for alignment
with our PoC, and extending the number of epochs to ensure
a minimum of 10 000 training steps, matching the step count
of our PoC. The parameters for the DP version, referred to
hereafter as DP-NTG, follow these modifications except for
the changes outlined in Section VIII.

C. Hyperparameters

This section outlines the training parameters used for the
evaluation5. Both our PoC and the baseline model were trained
for over 10 000 steps for consistency, with a batch size of
64. The learning rate for our PoC was set to 2e − 4. While
we implemented the TTUR as described in Section VII-B,
we empirically determined that a generator factor of 1.0,
updating the generator and discriminator at the same fre-
quency, yielded the best results. A learning rate scheduler,
referenced in Section VII-B, reduces the learning rate by a
factor of 0.1 after 4 000 steps, and label smoothing is applied
to the discriminator. Contrary to NTG, which employs the
WGAN-LP loss, DCGAN showed superior performance with
the standard adversarial loss (ref. Section II-C). However,
when training with DP-SGD, the WGAN-LP loss with 5
discriminator iterations per generator iteration proved superior
for DCGAN. The generator in our PoC accepts noise in-
put shaped (batch size, 100). Network dimensions otherwise
align with the DCGAN specifications from the PyTorch GAN
repository [54]. All remaining hyperparameters follow the
PyTorch defaults. Hyperparameters for the baseline model
are outlined in Section IX-B. During DP-SGD training, most
parameters were unchanged, with modifications to batch size,
epochs, and learning rates as specified in Section VIII.

D. Evaluation Setup

All measurements were performed on a server (2x Intel
Xeon Silver 4310, 128GB RAM) with Ubuntu 22.04.4 LTS.
The server contains 4 NVIDIA GeForce RTX 3080 (10GB

5The repository contains detailed configuration files for all measurements.

RAM each), but only one GPU was used per experiment. All
measurements were executed with 5-fold cross-validation.

E. Results

This section presents a comparative utility evaluation be-
tween our PoC and NTG. The results of both models on the
Geolife dataset are displayed in Figure 3, and those on FS-
NYC in Figure 4. Examples of one generated trajectory and
the generated point distributions are provided in Figures 5 and
Figure 6, respectively. All results are reported at the end of
the training, i.e., after approx. 100 000 steps.

1) Hausdorff Distance: The HD measures the maximum
disparity between two sets of points (ref. Section III-A). A
lower HD indicates closer similarity between the compared
sets, thereby indicating better performance. On Geolife, our
approach achieved a HD of 0.0646. NTG, with a HD of 0.120,
exhibited 1.87 times worse performance. On FS-NYC, our
PoC still performs better, but only by a factor of 1.45.

2) Sliced Wasserstein Distance: The SWD was employed
as a second metric to evaluate the spatial distribution utility.
It assesses the shape, size, and density of the points within
a generated dataset, with lower scores indicating a higher re-
semblance to the real dataset. The results confirm the findings
of the HD, that our PoC is superior at capturing the spatial
distribution of the dataset. On the Geolife dataset, DCGAN
performs 3.64 times better, and on FS-NYC, 1.34 times.

3) Total Travelled Distance: The TTD (ref. Section III-C)
compares the distribution of travel distances in a generated
dataset against the real-world dataset via the WD. Lower
values indicate a greater resemblance to the actual dataset.
On the Geolife dataset, NTG outperforms the PoC by a factor
of 2.5. This outcome is expected, as the TTD measures the
distance between consecutive locations and depends on the
model’s ability to capture the sequential dependency of these
locations. Since RNNs excel at capturing sequential properties,
it appears reasonable that they outperform the CNN-based
model in this metric. However, on the FS-NYC dataset, NTG
performs significantly worse than DCGAN in terms of TTD,
which is surprising. This variation could be attributed to
the Geolife data consisting of relatively uniformly sampled
trajectories, in contrast to the FS-NYC dataset, which features
user check-ins with greatly varied granularity and distances.

4) Time Reversal Ratio: The Time Reversal Ratio (TRR),
explained in Section III-D, counts the number of times two
consecutive timestamps are impossible, i.e., an optimal score
is 0. On both datasets, the PoC implementation performs



Fig. 4. On the FS-NYC [25] dataset, DCGAN captures the spatial distribution better than NTG, although the difference is less significant than on Geolife.
Interestingly, NTG performs the worst in regard to the TTD on FS-NYC. The TRR shows similar results to Geolife.

worst with 15% bad transitions on Geolife and 22% on FS-
NYC, while NTG produces barely any backward transitions.
As outlined for TTD, the RNN appears superior at capturing
the dependency of a timestamp to its predecessor.

F. DP Training

This section describes the evaluation of training with DP-
SGD. The results for both models are displayed in Figures 3
and 4, and the generated point cloud of DP-DCGAN is
shown in Figure 6. Initially, we conducted training on the
toy dataset MNIST-Seq and achieved results comparable to
those of the model trained without DP-SGD, using ε = 10
and the hyperparameter variations detailed in Section VIII.
On Geolife, the DP version of our PoC performs similar
to NTG in regard to the spatial metrics, but worse for the
sequential metrics. The point cloud visualisation (ref. Figure 6)
shows that the produced points cloud looks nearly normally
distributed, indicating a significant negative impact of the noise
added to the gradients by DP-SGD. Yet, the centre of the
distribution aligns with the highest density of real points,
showing learning of the model. On FS-NYC, the results for
the DP version are similar to those of the standard PoC, which
is a very promising outcome. Nevertheless, DP-SGD causes a
significant utility degradation, and optimisation is required to
make the DP model practical.

Remarkably, DP-NTG appears to outperform its non-DP
counterpart in regard to the spatial metrics and even achieves
the best values for both HD and SWD on the FS-NYC dataset.
Meanwhile, the sequential properties degrade substantially
compared to the standard NTG model. On closer investigation,
we noticed that the points generated by DP-NTG are randomly
scattered over the entire map and do not exhibit any structure,
which naturally yields very low HD values. The outputs of
DP-NTG appear to be mainly noise. We assume that the
combination of the LSTM with DP-SGD is highly unstable,
as we encountered several issues during the evaluation and
were unable to use WGAN-LP. Moreover, the results show
that DP-DCGAN and DCGAN perform similarly with DP-
DCGAN being slightly worse, while the relationship between
NTG and DP-NTG is less clear. While our results are insuf-
ficient to make definitive claims, the results indicate that the
combination of DP-SGD with CNN-based models might be
preferable. Our experiments show that applying DP-SGD to
these models is feasible but results in utility degradation.

G. Qualitative Analysis

Figure 5 displays an example of a generated trajectory, while
Figure 6 displays the distribution of generated locations over
those in the real dataset. While the generated data do not
yet match the utility required for more complex downstream
applications, they show a foundational ability to approximate
spatial distributions. This aligns with the quantitative results
described in the previous section. The point clouds primarily
capture the denser areas of the original dataset, demonstrating
the model’s capability to learn essential spatial patterns. How-
ever, finer details such as street layouts are not discernible,
suggesting limitations in the current DCGAN architecture’s
capacity to model highly detailed urban geography. A deeper
network could improve on this shortcoming.

X. DISCUSSION

This study’s exploration into using CNN-based GANs for
trajectory generation has yielded promising insights despite
not achieving state-of-the-art results. Our findings indicate
that CNN-based models are superior at capturing spatial
distributions, whereas RNN-based models better capture se-
quential properties, aligning with observations from related
work [21]. This difference in performance is likely attributed
to the architecture of each model. CNN-based models find
patterns in inputs using a sliding window that processes several
inputs at once. The RTCT transformation places values in
a matrix, such that values within the same window are not
necessarily sequentially adjacent. Therefore, sequentiality is
not necessarily the model’s focus. In contrast, RNN-based
layers always process values in a sequential manner, such
that sequential dependencies are emphasised. When comparing
our prototype with state-of-the-art models such as LSTM-
TrajGAN, it is important to note that these models exhibit
higher utility because they modify real trajectories rather
than generating new samples from Gaussian noise, as our
PoC does. While such approaches can improve utility, they
may compromise privacy by handling real data directly. Our
model, by generating synthetic trajectories, does not incur
these privacy issues. Additionally, the primary focus of our
work was on the proposed RTCTtransformation, hence the
use of DCGAN ”as-is” without tailoring it for trajectory
generation.

While the prototype’s ability to approximate spatial distri-
butions is promising, its failure to capture finer details like
specific street layouts underscores the limitations of the current
DCGAN model. This suggests a need for more sophisticated or



Fig. 5. The real trajectory is dense and follows a primary direction.
Generated trajectories are initially clustered in the map’s centre but become
more meaningful after training.

larger network architectures to adequately capture the spatial
patterns inherent in geographic data. Similar challenges were
noted by GeoPointGAN [17], which found that a standard
PointNet could not capture minor patterns such as small
roads, but using deeper networks improved results. We plan
to explore more complex CNN-based models in future work,
as it is beyond the scope of this paper.

Furthermore, we have demonstrated that training our PoC
with DP-SGD is feasible with acceptable overhead. While
the addition of noise impacts the results, this effect could
be manageable for sufficiently large datasets and a privacy
budget of ε = 10. Considering the limited quality of the
baseline results, more research is needed to fully assess the
utility degradation caused by DP training. Nonetheless, DP-
SGD represents a promising direction for trajectory generation
with formal privacy guarantees. Overall, this project lays
the groundwork for privacy-preserving, CNN-based trajectory
generation, which is discussed in the following section.

A. Future Work

The discussion highlights several avenues for future re-
search. The RTCT shows potential for adapting image-
generation GANs from computer vision to trajectory genera-
tion. This could allow the use of advanced generative models.

An important area for future development is a domain-
specific CNN-based GAN. Our current work has established
a suitable encoding for CNN models, but the next step is
to refine the model architecture itself. From our discussion,
several specific paths emerge. First, exploring deeper, more
complex models could enable capturing detailed aspects of
datasets, such as the road network, beyond just the primary
density clusters (ref. Figure 6). A starting point for this direc-
tion could be the large PointNet proposed by GeoPointGAN
for the generation of geographical point clouds [17]. Second,
the model could focus more on the sequential properties, for
instance, through combining a CNN with an RNN or positional
encodings. Third, future work could further examine the
premise that RNNs excel in sequential property representation
while CNNs are better suited for spatial distributions. Fourth,
implementing a specialised loss function akin to LSTM-
TrajGAN’s trajLoss could benefit model performance.

Additionally, future research could aim for a more equitable
comparison between RNN-based and CNN-based GANs. This
could involve developing a CNN-based GAN with an archi-
tecture similar to LSTM-TrajGAN, i.e., a CNN-based model

Fig. 6. The main density of points generated by DCGAN aligns with the
dataset but lacks detail. The DP version seems to be nearly normal distributed.

that receives a real trajectory encoding as input. Though a
traditional GAN framework relying on noise generation is
preferred for privacy, such an approach would facilitate a
detailed assessment of the distinct strengths of CNNs and
RNNs in trajectory generation. Furthermore, concrete attacks
and downstream applications could extend the privacy and
the utility analysis, respectively. For example, the Trajectory
User Linking (TUL) [63] success rate could be determined
as empirical privacy metric LSTM-TRAJGAN, although an
assignment of trajectory IDs to generated samples is not
straightforward due to the noise-only architecture. In terms
of downstream tasks, next week trajectory prediction [64],
range queries [17], or hotspot preservation [17] could be
deployed. Finally, future work could explore the impact of
the privacy budget ε on the provided utility and privacy by
training multiple identical models and only varying ε.

XI. CONCLUSION

Location trajectories, while valuable for various applica-
tions, inherently contain sensitive information, posing signifi-
cant privacy concerns. Traditional trajectory privacy-protection
mechanisms face a restrictive privacy-utility trade-off. There-
fore, deep learning-based generative models have been pro-
posed as a promising alternative. Yet, current models do not
provide formal privacy guarantees, such as DP. Moreover,
they mostly rely on RNN-based architectures. In this work,
we 1) introduced a Reversible Trajectory-to-CNN Transforma-
tions enabling the usage of CNN-based GANs from computer
vision for trajectory generation, 2) integrated this transfor-
mation with the well-known DCGAN in a Proof-of-Concept
implementation, 3) integrated both this PoC and the baseline
work NTG with DP-SGD, and 4) evaluated the resulting four
models across two datasets and four metrics. To the best of our
knowledge, this is the first instance of a fully CNN-based GAN
applied to trajectory generation and the initial application
of DP-SGD to ensure privacy in this context. Although our
PoC reproduces major density patterns of the datasets, it fails
to capture details and is less adept at capturing sequential
and temporal patterns. While the Proof-of-Concept does not
provide sufficient utility for real-world application, this de-
velopment opens promising avenues for further research into
the application of generative models from computer vision.
This study underlines the potential of CNN-based generative
models to either supplement or replace existing RNN-based
architectures in trajectory data privacy, encouraging further
exploration in this promising research direction.
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T. Strufe, “SoK: Differentially Private Publication of Trajectory Data,”
PoPETs, pp. 496–516, 2023.

[9] L. Sweeney, “Achieving k-anonymity privacy protection using gener-
alization and suppression,” Int. J. Uncertain. Fuzziness Knowl.-Based
Syst., vol. 10, no. 05, pp. 571–588, Oct. 2002.

[10] C. Dwork and A. Roth, “The Algorithmic Foundations of Differential
Privacy,” Found. Trends Theor. CS., vol. 9, no. 3-4, pp. 211–407, 2013.

[11] V. Primault, S. B. Mokhtar, C. Lauradoux, and L. Brunie, “Differentially
Private Location Privacy in Practice,” 2014.

[12] J. Rao, S. Gao, Y. Kang, and Q. Huang, “LSTM-TrajGAN: A Deep
Learning Approach to Trajectory Privacy Protection,” Leibniz Int. Proc.
Inform., vol. 177, no. GIScience, pp. 1–16, 2020.

[13] Y. Qu, J. Zhang, R. Li, X. Zhang, X. Zhai, and S. Yu, “Generative
adversarial networks enhanced location privacy in 5G networks,” Sci.
China Inf. Sci., vol. 63, no. 12, p. 220303, Dec. 2020.

[14] T. Ma and F. Song, “A Trajectory Privacy Protection Method Based on
Random Sampling Differential Privacy,” ISPRS Int. J. Geo-Inf., vol. 10,
no. 7, p. 454, Jul. 2021.

[15] E. Naghizade, L. Kulik, E. Tanin, and J. Bailey, “Privacy- and Context-
aware Release of Trajectory Data,” ACM Trans. Spat. Algorithms Syst.,
vol. 6, no. 1, pp. 1–25, Feb. 2020.

[16] E. Buchholz, A. Abuadbba, S. Wang, S. Nepal, and S. S. Kanhere,
“Reconstruction Attack on Differential Private Trajectory Protection
Mechanisms,” in Proc. 38th Annu. Comput. Secur. Appl. Conf., ser.
ACSAC ’22. New York, NY, USA: Association for Computing
Machinery, Dec. 2022, pp. 279–292.

[17] T. Cunningham, K. Klemmer, H. Wen, and H. Ferhatosmanoglu,
“GeoPointGAN: Synthetic Spatial Data with Local Label Differential
Privacy,” May 2022.

[18] M. Shao, J. Li, Q. Yan, F. Chen, H. Huang, and X. Chen, “Structured
Sparsity Model Based Trajectory Tracking Using Private Location Data
Release,” IEEE Trans. Dependable Secure Comput., vol. 18, no. 6, pp.
2983–2995, 2020.

[19] X. Liu, H. Chen, and C. Andris, “trajGANs: Using generative adversarial
networks for geo-privacy protection of trajectory data (Vision paper),”
in Locat. Priv. Secur. Workshop, Melbourne, Australia, 2018, pp. 1–7.

[20] N. Ponomareva et al., “How to DP-fy ML: A Practical Guide to Machine
Learning with Differential Privacy,” Mar. 2023.

[21] E. Buchholz, A. Abuadbba, S. Wang, S. Nepal, and S. S. Kanhere, “SoK:
Can Trajectory Generation Combine Privacy and Utility?” Proceedings
on Privacy Enhancing Technologies, vol. 2024, no. 3, July 2024.

[22] A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks,”
Jan. 2016. Available: http://arxiv.org/abs/1511.06434

[23] C. Donahue, J. McAuley, and M. Puckette, “Adversarial Audio
Synthesis,” Feb. 2019. Available: http://arxiv.org/abs/1802.04208

[24] A. Cheng, “PAC-GAN: Packet Generation of Network Traffic using Gen-
erative Adversarial Networks,” in 2019 IEEE 10th Annu. Inf. Technol.
Electron. Mob. Commun. Conf. IEMCON. Vancouver, BC, Canada:
IEEE, Oct. 2019, pp. 0728–0734.

[25] Dingqi Yang, Daqing Zhang, V. W. Zheng, and Zhiyong Yu, “Modeling
User Activity Preference by Leveraging User Spatial Temporal Charac-
teristics in LBSNs,” IEEE Trans. Syst. Man Cybern, Syst., vol. 45, no. 1,
pp. 129–142, Jan. 2015.

[26] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining interesting locations
and travel sequences from GPS trajectories,” in Proc. 18th Int. Conf.
World Wide Web, ser. WWW ’09. New York, NY, USA: Association
for Computing Machinery, Apr. 2009, pp. 791–800.

[27] U. Erlingsson, V. Pihur, and A. Korolova, “RAPPOR: Randomized
Aggregatable Privacy-Preserving Ordinal Response,” in Proc. 2014 ACM
SIGSAC Conf. New York, USA: ACM, Nov. 2014, pp. 1054–1067.

[28] F. McSherry, “Delta in Differential Privacy,”
Oct. 2022. Available: https://github.com/frankmcsherry/blog/blob/
6aec29018eacc31c40e9dfd696f6c9ee591f8f5c/posts/2017-02-08.md

[29] F. McSherry and K. Talwar, “Mechanism Design via Differential
Privacy,” in 48th Annu. IEEE Symp. Found. Comput. Sci. FOCS07.
Providence, RI, USA: IEEE, Oct. 2007, pp. 94–103.

[30] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
Inference Attacks Against Machine Learning Models,” in 2017 IEEE
SP. San Jose, CA, USA: IEEE, May 2017, pp. 3–18.

[31] M. Abadi et al., “Deep Learning with Differential Privacy,” in Proc. 2016
ACM SIGSAC Conf, ser. CCS ’16. New York, NY, USA: Association
for Computing Machinery, Oct. 2016, pp. 308–318.

[32] I. J. Goodfellow et al., “Generative Adversarial Networks,” Commun.
ACM, vol. 63, no. 11, pp. 139–144, 2014.

[33] S. Chintala, “How to Train a GAN? Tips and tricks to make GANs
work,” May 2023. Available: https://github.com/soumith/ganhacks

[34] D. Huttenlocher, G. Klanderman, and W. Rucklidge, “Comparing images
using the Hausdorff distance,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 15, no. 9, pp. 850–863, Sept./1993.

[35] J. Hua, Y. Gao, and S. Zhong, “Differentially private publication of
general time-serial trajectory data,” in IEEE INFOCOM, vol. 26. Hong
Kong, China: IEEE, Apr. 2015, pp. 549–557.

[36] M. Li, L. Zhu, Z. Zhang, and R. Xu, “Achieving differential privacy of
trajectory data publishing in participatory sensing,” Inf. Sci., vol. 400–
401, pp. 1–13, Aug. 2017.

[37] S. Chen, A. Fu, J. Shen, S. Yu, H. Wang, and H. Sun, “RNN-DP: A
new differential privacy scheme base on Recurrent Neural Network for
Dynamic trajectory privacy protection,” J. Netw. Comput. Appl., vol.
168, no. February, p. 102736, 2020.

[38] J. Zhang, Q. Huang, Y. Huang, Q. Ding, and P.-W. Tsai, “DP-TrajGAN:
A privacy-aware trajectory generation model with differential privacy,”
Future Gener. Comput. Syst., vol. 142, no. C, pp. 25–40, Dec. 2022.

[39] W. Jiang, W. X. Zhao, J. Wang, and J. Jiang, “Continuous Trajectory
Generation Based on Two-Stage GAN,” J. Data Sci., vol. 19, no. 1, pp.
126–141, 2021.

[40] J. W. Kim and B. Jang, “Deep learning-based privacy-preserving
framework for synthetic trajectory generation,” Journal of Network and
Computer Applications, vol. 206, p. 103459, Oct. 2022.

[41] Z. Zhang, X. Xu, and F. Xiao, “LGAN-DP: A novel differential private
publication mechanism of trajectory data,” Future Gener. Comput. Syst.,
vol. 141, no. C, pp. 6392–703, Dec. 2022.

[42] R. Ozeki, H. Yonekura, H. Rizk, and H. Yamaguchi, “Balancing Privacy
and Utility of Spatio-Temporal Data for Taxi-Demand Prediction,” in
2023 24th IEEE Int. Conf. Mob. Data Manag. MDM, vol. 24. Los
Alamitos, CA, USA: IEEE, Jul. 2023, pp. 215–220.

[43] J. Shin, Y. Song, J. Ahn, T. Lee, and D.-H. Im, “TCAC-GAN: Synthetic
Trajectory Generation Model Using Auxiliary Classifier Generative
Adversarial Networks for Improved Protection of Trajectory Data,” in
2023 IEEE Int. Conf. Big Data Smart Comput. BigComp. Jeju, Republic
of Korea: IEEE, Feb. 2023, pp. 314–315.

[44] Y. Song, J. Shin, J. Ahn, T. Lee, and D.-H. Im, “Except-Condition
Generative Adversarial Network for Generating Trajectory Data,” in
Database Expert Syst. Appl., ser. Lecture Notes in Computer Science,
C. Strauss, T. Amagasa, G. Kotsis, A. M. Tjoa, and I. Khalil, Eds.
Cham: Springer Nature Switzerland, 2023, pp. 289–294.

https://mashable.com/archive/redditor-muslim-cab-drivers
https://mashable.com/archive/redditor-muslim-cab-drivers
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1802.04208
https://github.com/frankmcsherry/blog/blob/6aec29018eacc31c40e9dfd696f6c9ee591f8f5c/posts/2017-02-08.md
https://github.com/frankmcsherry/blog/blob/6aec29018eacc31c40e9dfd696f6c9ee591f8f5c/posts/2017-02-08.md
https://github.com/soumith/ganhacks


[45] X. Wang, X. Liu, Z. Lu, and H. Yang, “Large Scale GPS Trajectory
Generation Using Map Based on Two Stage GAN,” J. Data Sci., vol. 19,
no. 1, pp. 126–141, Feb. 2021.

[46] Y. Zhu, Y. Ye, S. Zhang, X. Zhao, and J. J. Q. Yu, “DiffTraj: Generating
GPS Trajectory with Diffusion Probabilistic Model,” in Adv. Neural Inf.
Process. Syst., ser. 1, vol. 23. New Orleans, USA: arXiv, 2023, p. 21.

[47] J. Jordon, J. Yoon, and M. van der Schaar, “PATE-GAN: Generating
Synthetic Data with Differential Privacy Guarantees,” in International
Conference on Learning Representations, 2019.

[48] L. Xie, K. Lin, S. Wang, F. Wang, and J. Zhou, “Differentially Private
Generative Adversarial Network,” Feb. 2018.

[49] J. Rao, S. Gao, Y. Kang, and Q. Huang, “LSTM-TrajGAN,” 2020.
Available: https://github.com/GeoDS/LSTM-TrajGAN

[50] S. Mehri et al., “SampleRNN: An Unconditional End-to-End Neural
Audio Generation Model,” 2016.

[51] A. van den Oord et al., “WaveNet: A Generative Model for Raw
Audio,” Sep. 2016. Available: http://arxiv.org/abs/1609.03499

[52] D. Singh and B. Singh, “Investigating the impact of data normalization
on classification performance,” Appl. Soft Comput., vol. 97, p. 105524,
Dec. 2020.

[53] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing
Adversarial Examples,” 2014.

[54] Erik Linder-Norén, “Pytorch-GAN,” 2021. Available: https://github.
com/eriklindernoren/PyTorch-GAN

[55] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“GANs Trained by a Two Time-Scale Update Rule Converge to a Local
Nash Equilibrium,” 2017.

[56] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,” 2012.
[57] Soumith Chintala, “How to train a GAN, NIPS 2016,” Aug. 2017.

Available: https://www.youtube.com/watch?v=myGAju4L7O8
[58] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”

3rd Int. Conf. Learn. Represent. ICLR 2015 San Diego CA USA May
7-9 2015 Conf. Track Proc., vol. abs1412.69, pp. 1–15, Dec. 2014.

[59] A. Yousefpour et al., “Opacus: User-Friendly Differential Privacy
Library in PyTorch,” Sep. 2021. Available: https://arxiv.org/abs/2109.
12298v4

[60] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved Training of Wasserstein GANs,” in Adv. Neural Inf. Process.
Syst., ser. NIPS’17, vol. 30. Long Beach, California, USA: Curran
Associates, Inc., 2017, pp. 5769–5779.

[61] H. Petzka, A. Fischer, and D. Lukovnicov, “On the regularization of
Wasserstein GANs,” Mar. 2018.

[62] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative ad-
versarial networks,” in Proc. 34th Int. Conf. Mach. Learn. - Vol. 70,
ser. ICML’17. Sydney, NSW, Australia: JMLR.org, Aug. 2017, pp.
214–223.

[63] L. May Petry, C. Leite Da Silva, A. Esuli, C. Renso, and V. Bogorny,
“MARC: A robust method for multiple-aspect trajectory classification
via space, time, and semantic embeddings,” Int. J. Geogr. Inf. Sci.,
vol. 34, no. 7, pp. 1428–1450, 2020.

[64] I. Fontana, M. Langheinrich, and M. Gjoreski, “GANs for Privacy-Aware
Mobility Modeling,” IEEE Access, vol. 11, pp. 29 250–29 262, 2023.

[65] C. Esteban, S. L. Hyland, and G. Rätsch, “Real-valued (Medical) Time
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APPENDIX

A. Glossary

CNN Convolutional Neural Network.
DCGAN Deep Convolutional Generative Adversarial Net-

work.
DL Deep Learning.
DP Differential Privacy.
DP-SGD Differentially Private Stochastic Gradient Descent,

refer Section II-B.
EMD Earth Mover’s Distance.
FC Fully Connected layer. Also called Dense or Linear layer.
FS-NYC Foursquare NYC [25].
GAN Generative Adversarial Network.
HD Hausdorff Distance.

LSTM Long Short-Term Memory.
LSTM-TrajGAN LSTM-TrajGAN [12].
MNIST-Seq MNIST Sequential Dataset: Images are trans-

formed to sequences of length 28 with 28 features each
[65].

NTG Noise-TrajGAN.
PoC Proof-of-Concept.
POI Point of Interest.
RNN Recurrent Neural Network.
RTCT Reversible Trajectory-to-CNN Transformations.
SOTA State Of The Art.
SWD Sliced Wasserstein Distance.
TRR Time Reversal Ratio.
TTD Total Travelled Distance.
TTUR Two Time Update Rule.
TUL Trajectory User Linking.
WD Wasserstein Distance.
WGAN Wasserstein GAN[62].
WGAN-LP WGAN with Lipschitz Penalty [61].
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