
Privacy-Preserving
Production Process Parameter Exchange

Jan Pennekamp∗, Erik Buchholz∗, Yannik Lockner†, Markus Dahlmanns∗, Tiandong Xi‡,
Marcel Fey‡, Christian Brecher‡, Christian Hopmann†, and Klaus Wehrle∗

∗Communication and Distributed Systems, RWTH Aachen University, Germany
†Institute of Plastics Processing, RWTH Aachen University, Germany

‡Machine Tools and Production Engineering, RWTH Aachen University, Germany
{pennekamp, buchholz, dahlmanns, wehrle}@comsys.rwth-aachen.de

{yannik.lockner, christian.hopmann}@ikv.rwth-aachen.de · {t.xi, m.fey, c.brecher}@wzl.rwth-aachen.de

ABSTRACT
Nowadays, collaborations between industrial companies always go
hand in hand with trust issues, i.e., exchanging valuable production
data entails the risk of improper use of potentially sensitive infor-
mation. Therefore, companies hesitate to offer their production
data, e.g., process parameters that would allow other companies
to establish new production lines faster, against a quid pro quo.
Nevertheless, the expected benefits of industrial collaboration, data
exchanges, and the utilization of external knowledge are significant.

In this paper, we introduce our Bloom filter-based Parameter
Exchange (BPE), which enables companies to exchange process
parameters privacy-preservingly. We demonstrate the applicability
of our platform based on two distinct real-world use cases: injection
molding and machine tools. We show that BPE is both scalable and
deployable for different needs to foster industrial collaborations.
Thereby, we reward data-providing companies with payments while
preserving their valuable data and reducing the risks of data leakage.

CCS CONCEPTS
• Security and privacy → Privacy-preserving protocols; Us-
ability in security and privacy; Domain-specific security and privacy
architectures; • Applied computing→ Engineering;

KEYWORDS
secure industrial collaboration; Bloom filter; oblivious transfer;
Internet of Production
ACM Reference Format:
Jan Pennekamp, Erik Buchholz, Yannik Lockner, Markus Dahlmanns, Tian-
dong Xi, Marcel Fey, Christian Brecher, Christian Hopmann, and Klaus
Wehrle. 2020. Privacy-Preserving Production Process Parameter Exchange.
In Annual Computer Security Applications Conference (ACSAC 2020), De-
cember 7–11, 2020, Austin, USA. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3427228.3427248

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC 2020, December 7–11, 2020, Austin, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8858-0/20/12. . . $15.00
https://doi.org/10.1145/3427228.3427248

1 INTRODUCTION
The impact of the Internet of Things (IoT) across various areas, e.g.,
the Industrial IoT (IIoT) and cyber-physical systems (CPSs), has led
to a vastly increased sensor-based collection of production data
that is not only used for their original purpose but also collected for
further analyses [20, 40, 69]. Therefore, companies can utilize this
analyzed data to improve their production processes, e.g., by feed-
ing back results to optimize process parameters [32, 62]. In theory,
sharing such data could be especially useful for quick adjustments
to address customer change requests [56] or the cheaper commis-
sioning of production lines [61]. Still, plenty of information is only
retained locally [44], i.e., stored in data silos [33], hindering the
entirety of companies to profit from already analyzed parameters.

Novel concepts, such as the Internet of Production (IoP) [33, 55],
propose to further facilitate collaborations to utilize external knowl-
edge. However, these advances are hindered by the lack of suitable
solutions that consider industry needs [40], i.e., a prevention of
sensitive information leakage on data provider as well as on the
client-side and a valuable reward for providing data. Existing solu-
tions [8, 9, 17, 21, 24, 77] either do not consider the privacy of the
data-providing companies, do not take multiple data providers into
account, or do not value the privacy of data requesting companies.

To counter this unsatisfying situation, we propose an exchange
platform which allows companies to privacy-preservingly retrieve
valuable (external) data. Motivated by a real-world use case in the
domain of injection molding, we first explicitly specify the plat-
form’s general functionality. Moreover, we consider the already
outlined industry needs, i.e., data provider privacy to not leak any
confidential information within the shared data as well as client pri-
vacy to not reveal any future or current business plans through sub-
mitted requests, and a proper reward system to instigate companies
to exchange their valuable data. Thereby, our platform facilitates
the privacy-preserving exchange of production data in various do-
mains and enables novel use cases, e.g., as introduced by the IoP, and
unlocks new business models for participating data-providing com-
panies as the value of data is widely acknowledged [33, 40, 56, 69].

However, a suitable concept for industrial data exchanges not
only has to address privacy concerns but must also scale to its needs.
Hence, we make use of (cryptographic) building blocks whose appli-
cability has significantly improved [2, 57, 63, 66, 67]. In particular,
we use Bloom filters and oblivious transfers to build a universal
design called BPE, which we evaluate with two real-world use cases.

https://www.acsac.org/2020/submissions/papers/artifacts/
https://doi.org/10.1145/3427228.3427248
https://doi.org/10.1145/3427228.3427248
https://doi.org/10.1145/3427228.3427248

ACSAC 2020, December 7–11, 2020, Austin, USA Pennekamp et al.

Contributions. Our main contributions are as follows.
• We propose a novel design that enables a privacy-preserving
exchange of process parameters in industrial settings.

• Our new platform protects the data privacy of the data owner
as well as the details of all potentially sensitive client queries.

• We open-source our fully-tested prototype1, which is con-
sidered a functional artifact after an independent audit.

• We demonstrate the applicability of our approach in different
scenarios and evaluate two real-world use cases: (i) a process
parameter retrieval for injection molding to reduce the ramp-
up phase of new production lines, and (ii) an exchange to
improve the machine tool settings for individual workpieces.

Organization. In Section 2, we present our scenario illustrated
with a suitable application in injection molding. Then, we introduce
our design goals (Section 3) and used building blocks (Section 4). In
Section 5, we detail our design of BPE and present our implementa-
tion in Section 6. We demonstrate its performance and applicability
(incl. machine tool use case) in Section 7. We further discuss its secu-
rity and additional design variants in Section 8. Then, in Section 9,
we present related work and conclude our paper in Section 10.

2 SCENARIO
In this section, we motivate the need for a privacy-preserving pa-
rameter exchange by shorter ramp-up phases of new product lines
in an injection molding use case and further introduce the benefits
of such an exchange in general. Subsequently, we derive challenges
that stem from the sensitivity of potentially shared information.

2.1 Transfer Learning for Injection Molding
The selection of injection molding (IM) processes as our starting
point for deriving the benefits of a parameter exchange is based on
their importance in thermoplastics. IM is responsible for the pro-
cessing of around 55Mio. tons of polymer materials worldwide each
year, which grosses to 16.42 % of yearly polymer production [14, 58].

Production Process. The production is discontinuous. Polymer
granulate is fed into a barrel in which a screw rotates, superposed
with a translational drawback movement. The friction generated
by motion between granulate, melt, screw, and barrel surfaces as
well as heat introduced by heater bands around the barrel cause the
plasticizing of the material along the axial transport to the screw
tip. The screw anteroom fills during the drawback, accumulating
material for the injection phase. During injection, the screw serves
as a piston, injecting the polymer melt under high pressure into the
cavity of an actively cooled mold. Once the volumetric fill of the
cavity is concluded, the pressure-defined packing phase starts. The
machine presses material into the cavity to compensate volumetric
shrinkage occurring during the cooling process. Eventually, the
closed mold opens and allows the ejection of the solidified part.
During cooling, the machine recuperated the injected material in
the screw anteroom, ready for the next production cycle [52].

Identifying Parameters. In this highly complex environment,
a major challenge is to determine an optimized set of IM-machine
parameters during the process setup. Suboptimal processes yield
a higher scrap rate, resulting in lower part quality, or consuming

1Our Python code is available at: https://github.com/COMSYS/parameter-exchange.

more energy during (mass) production. While arbitrary optimiza-
tion by expert knowledge [11, 47], i.e., by trial-and-error, or process-
oriented optimization by simulation [6, 10, 34] is widespread, ob-
jective optimization can be achieved with unbiased mathematical
approaches such as artificial neural networks (ANNs). ANNs are
vastly audited methods to model the correspondence between IM-
machine and process parameters as input and part quality parame-
ters as output [15, 75, 83, 90, 92]. Models are used by evolutionary
algorithms [47, 73, 84] or particle-swarm algorithms [1, 6, 43, 79],
or to derive an optimized parameter set for (mass) production.

Transfer Learning. However, even shallow ANNs usually re-
quire an amount of training data, which is rarely obtainable during
production, rendering ANNs unattractive for this use case. Transfer
learning could mitigate this downside. In terms of machine learning,
it defines the transfer of knowledge from a source assignment 𝐴𝑆 ,
consisting of a source domain 𝐷𝑆 and a source task 𝑇𝑆 , to a target
assignment 𝐴𝑇 [87]. A domain 𝐷 describes the data origin with a
defined feature set 𝑋 and a belonging probability distribution 𝑃 (𝑋).
A task 𝑇 , on the contrary, is determined by the output parameter
space 𝑌 and the mapping 𝑓 (𝑋) with 𝑓 : 𝑋 → 𝑌 .

While different transfer learning approaches have been identi-
fied [53, 87], network-based transfers have been validated when
correlating IM-machine and part quality parameters. Especially the
transfer between simulation and experimental data is intensively
researched and also implemented as demonstrators [37, 38, 48, 82].
The network-based transfer considers a pre-trained model 𝑓𝑆 (𝑌𝑆)
which has been fitted by abundant labeled samples (𝑥𝑆 , 𝑦𝑆) from a
source domain 𝐷𝑆 . Then, 𝑓𝑆 (𝑌𝑆) is transferred to a target task 𝑇𝑇 .
Here, as little as possible training data (𝑥𝑇 , 𝑦𝑇) to achieve a good
model is desired. However, simulations have to be rerun if influ-
ences on the IM process, such as the material or the part change,
introducing a high repetitiveness. Especially the successful transfer
of knowledge between processes with varying influencing parame-
ters make transfer learning a real alternative to expert knowledge.
The transfer between processes of different molded parts indicates
promising results [36], suggesting a close correlation of the transfer
learning success with the similarity of source and target domain.

A Lack of Models. When preparing for process modeling, suit-
able data or models might only be available at other, unaffiliated
companies. However, customer interests and legal boundaries as
well as the desire to retain a maximum of process information as
proprietary information conflict with the availability and publica-
tion of production data in general [54, 56] and also in the field of
plastics processing [45]. However, advances in data acquisition and
availability on the own enterprise in terms of Industry 4.0 expedite
the need for new business models and value streams. A reasonable
compensation as well as a proper separation of relevant process
data and customer information can possibly motivate enterprises
to assume a role as data provider. Hence, a privacy-preserving pa-
rameter exchange would be highly beneficial for the establishment
of data-driven methods for process optimization in manufacturing.

2.2 Production Process Parameter Exchange
We use injection molding as an example showing that utilizing pro-
duction data across organizational boundaries is a desirable aspect
of the future production landscape. Figure 1 shows a workflow of

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://github.com/COMSYS/parameter-exchange

Privacy-Preserving Production Process Parameter Exchange ACSAC 2020, December 7–11, 2020, Austin, USA

Similar Parameters

Transfer Learning Injection Molding

Client

Injection Molding

Data Provider(s)

Mod
eli

ng Production

Empirical
Testing

Parameter(s)

Measured
Parameters

Query Similar
Process Parameters1

3
2

4

5

Intersection

Figure 1: An exchange of process parameters between com-
panies illustrated based on the use case of injectionmolding.

how companies can profit. Thereby, (1) clients query parameters of
similar processes from (external) data providers, (2) data providers
curate matching parameters from their own production and (3)
send these results back to the client which can enhance both their
(4) modeling, e.g., integrating more real-world process data, as well
as (5) production, e.g., utilizing well-fitting configurations.

Need for a Suitable Approach. Today, companies already col-
lect much process information [44], i.e., they own data that is po-
tentially also relevant for other companies. However, the lack of
suitable data security mechanisms, missing opportunities to gain
benefits from sharing data, and the fear of leaking sensitive business
secrets, i.e., information leaking know-how of a company, manifests
the existing silo mentality [33, 72]. Simply making all information
freely accessible is no option in competitive environments.

Contrary to work in the medical domain [41, 78, 93, 95], where
usually a single stakeholder offloads data to an untrusted cloud
(with𝑚 stakeholders querying information), we consider a setting
where multiple stakeholders offload their data and multiple (other)
stakeholders query information. To retain the utility of information,
opposed to best practices when handling sensitive user data [81],
we cannot anonymize data records when serving them in the cloud.

Hence, companies need suitable ways to ease the exchange of
process parameters without leaking confidential data and to intro-
duce a quid pro quo for data providers for motivation to share their
data even with potential competitors. Instead of simply retaining
their process information in local data silos, companies could sell
their data, which is collected anyway, to third parties which them-
selves want to reduce their costs by utilizing this information, e.g.,
by performing process optimization using this shared information.

2.3 Scenario Challenges
Based on the need for a privacy-preserving exchange of production
data, we now highlight scenario-specific challenges. While the most
crucial aspects concern privacy and information security, further
challenges are related to the operation of such a data exchange.

Crucial Properties. The most crucial properties directly fol-
low from the competitive environment. As companies are notori-
ously cautious [72], they intend to only share specifically requested
datasets [33] while preserving long-term security [13], i.e., data
requests must be specified precisely. Consequentially, a global cata-
log of existing data or a way to browse available data items must
not exist. Thereby, data providers do not to lose control of their
offered data while monetizing its usage. Furthermore, requesting
companies, i.e., clients, want to utilize external information for their
benefits, e.g., to improve their production processes, and do not

want to share their interest. To still achieve a competitive advan-
tage, the utilization of requested and retrieved data must remain
private, including the process of identifying relevant data items.

Industrial Setting. Additional challenges originate from the
industrial setting. In contrast to the analysis of personal data, com-
panies impose very strict usage rules [94], e.g., molds are regularly
owned by customers of injection molding manufacturers and only
loaned to the companies for production. Therefore, any uninten-
tional disclosure of intellectual property has to be strictly avoided.
For example, in injection molding, geometrical data of produced
parts is needed for the calculation of similarity scores. Hence, it
should remain private if not shared or sold on purpose. Establishing
trust in a single third party is highly unlikely as companies strive to
limit the threat of data leaks [72]. Regardless, creating new business
models for companies with existing data repositories could incen-
tivize their participation [94], i.e., a privacy-preserving exchange
could open up a new stream of revenue for data-providing compa-
nies. Consequentially, a suitable billing mechanism is required.

Operational Considerations. Given that privacy-preserving
designs and security building blocks usually introduce a compu-
tational overhead and possibly add communication [88], the data
exchange must be executed within reasonable, use case-induced
boundaries. This aspect is not limited to the exchange, but also in-
cludes a potential setup. In particular, various security and privacy
guarantees might directly contradict the feasibility of a proposed
concept. Furthermore, data-providing companies might not be able
to participate in data exchanges and their associated protocols.
Hence, flexibility is needed to also account for such situations.

Based on the example of injectionmolding, we discussed the value of
production data and the benefits of utilizing external information, i.e.,
we discovered reasons for inter-organizational data exchanges. Here,
the industrial setting and the need for strong security and privacy
challenge the establishment of a widely-accepted exchange platform.

3 DESIGN GOALS
Based on the description of our considered scenario, we now derive
a set of five distinct design goals, which must be considered by any
concept that proposes an exchange of process parameters. These
goals summarize the needs of the individual participants (G1 and
G2) as well as universal conceptual requirements (G3, G4, and G5).

G1: Provider Privacy. Companies offering their process param-
eters to other companies still have a strong desire to maintain their
privacy and data secrecy as the combined information of offered
data can reveal internal information. For example, in our injection
molding use case, knowledge about the data provider correlated
with shared geometry parameters could result in the identification
of specific parts and, thereby, reveal highly sensitive information
about the implemented production processes and the company’s
customers. Thus, data providers mandate that access to their data is
only granted in parts and only to authorized parties. Furthermore,
as long as data providers do not share provider-identifying infor-
mation voluntarily, they must remain anonymous for all clients.

G2: Client Privacy. Protecting the client’s requests is just as
important for the success of a process parameter exchange. First,
data providers must not be able to attribute the requested data items
to the client. Otherwise, information on new developments might

ACSAC 2020, December 7–11, 2020, Austin, USA Pennekamp et al.

Client

Data Provider 1

Data Provider n
Exchange
Platform

G1: Provider Privacy

G1: Provider Privacy

G2: Client Privacy
G3: Deployability
G4: Performance
G5: Adaptability

Relevant Items

Available Items

Locally Compute
Similarity Metric

Known ParametersPayment for Items

Known Parameters

Payment for Items

Obliviously Match
Parameters with Queries

Figure 2: Apart from design-specific goals, any suitable ex-
change platform has to especially consider G1 and G2.

be identifiable and directly linked to a company. Second, the request
generation, i.e., the metric identifying meaningful data items, must
remain private. In a production landscape with ubiquitous data
exchanges, such knowledge constitutes the competitive advantage
as the individual parameters can be considered a common good.

G3: Deployability. In terms of realizing a real-wold exchange,
two main aspects are crucial. On the one hand, requests must allow
for a flexible matching, i.e., clients can use any metric they like to
identify meaningful data items and must be able to request these
identified data items. Hence, this metric can neither be part of the
exchange, nor should it be public during the exchange (cf. G2). On
the other hand, to incentivize data providers to offer their valuable
data, a billing mechanism is required to enable new business models.
Finally, providers must not be required to remain online all the time,
i.e., client requests can be handled without their active involvement.

G4: Performance. As privacy-preserving designs usually in-
cur a performance overhead, the overall performance should still
be reasonable and appropriate for the respective use case, i.e., it
should not outweigh the potential benefits. However, specifying
concrete constraints is counterproductive since performance limits
can always depend on the importance of exchanged data, i.e., very
valuable data can justify significant resource needs. Similarly, intro-
duced hardware and network requirements should be reasonable
as well, i.e., ideally, commodity devices are sufficient to participate.

G5: Adaptability. Along with the previous goals of privacy (G1
and G2) and performance (G4), adapting the trade-off between
security and performance must be considered. Some data is more
sensitive than others and should be treated accordingly, i.e., a con-
cept to deal with these situations should be offered to optimally
address the trade-off while minimizing the number of changes.

These design goals are critical to realize a parameter exchange. We
provide an overview of our use case-independent scenario in Figure 2
along with the design goals and the exchangedmessages. Any proposed
design must provide a concept of how to connect clients with relevant
data providers. In particular, it must realize the functionality, which
we illustrate with a cloud, while addressing the presented design goals.

4 PRELIMINARIES
To establish a common background of our utilized building blocks,
we briefly introduce their concepts in this section. Namely, we rely
on Bloom filters and oblivious transfers (OTs) as components of
our design and optionally on private set intersections (PSIs) for a
variation that offers improved security guarantees (cf. Section 8.2).

BloomFilter.ABloomfilter is a probabilistic and space-efficient
data structure that allows for efficient membership tests without an

efficient possibility to extract a list of all inserted elements [7]. Apart
from insertions, Bloom filters support membership tests that check
whether a specific element was inserted. Due to its probabilistic
property, such queries can return false positives with a tunable
false positive (FP) rate 𝜀. However, false negatives cannot occur.

A Bloom filter 𝐵 consist of an array with fixed length𝑛 and uses𝑘
hash functions (ℎ1, . . . , ℎ𝑘) to map elements to the individual fields
of the array. Inserting an element 𝑥 works by setting 𝐵 [ℎ𝑖 (𝑥)] =
1∀𝑖 ∈ {1, . . . , 𝑘}. Consequently, querying an element 𝑦 equals a
bitwise comparison of ℎ𝑖 (𝑦) ∀𝑖 ∈ {1, . . . , 𝑘} with 𝐵. Taking the FP
rate into account, 𝑦 was inserted in 𝐵 if all set values in ℎ𝑖 (𝑦) ∀𝑖 ∈
{1, . . . , 𝑘} are set in 𝐵 as well. The FP rate 𝜀 can be computed based
on the number of stored elements𝑚, the length 𝑛, and the number
of hash functions 𝑘 [70]: 𝜀 = (1 − (1 − 1

𝑛)
𝑘𝑚)𝑘 .

Adjusting the individual parameters (e.g., to reduce 𝜀) influences
the storage size as well as the processing of insertion and querying.

Oblivious Transfer (OT). OTs allow a client (receiver) to re-
trieve one of two items from a server (sender) without the server
knowing which of the items has been transferred [29, 60]. After the
OT, the receiver has access to a single item only and is unaware
of the other. This basic form is also called 1-out-of-2 OT. Several
additions enable more sophisticated scenarios: 1-out-of-𝑛 OTs or
𝑘-out-𝑛 OTs [18]. For improved performance, a few expensive base
OTs can seed a large number of less expensive OT extensions [3].

To achieve the required security, i.e., hiding the contents of the
data transfer, significant computational overhead and communica-
tion are introduced [51]. While the trade-off between computations
and communication is adaptable, OTs are still costly, and, thus,
cannot be used to efficiently transfer large amounts of data.

Private Set Intersection (PSI). PSI is a cryptographic building
block that allows two parties to calculate the intersection of two
confidential sets without revealing included elements [25]. Depend-
ing on the concrete implementation, only one or both parties learn
the content or the size of the intersection [22]. To realize PSIs, dif-
ferent cryptographic concepts have been utilized. For improved
security, many efficient designs utilize OTs [42, 67]. Similar to OTs,
PSIs also suffer from overhead with increasing set sizes.

5 BPE: A BLOOM FILTER-BASED EXCHANGE
In this section, we propose BPE, a novel privacy-preserving Bloom
filter-based production process Parameter Exchange for companies.

5.1 Notation for the Exchange of Parameters
To provide a more formal understanding, we first introduce the un-
derlying foundations of any offloaded record and potential queries.
A parameter record 𝑝 = 𝑥 ∥ 𝑦 = 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . 𝑦𝑚 consists of
a payload 𝑦 and a number of (identifying) parameters 𝑥𝑖 . Here, 𝑥
can correspond to a part that should be manufactured at a specific
machine while 𝑦, for example, represents used machine settings.
The respective indexing is defined by𝑋 → 𝐻 : ℎ𝑘 (𝑥 ′1, ..., 𝑥

′
𝑛) = 𝑖𝑑𝑥 ′

with a use case-specific rounding function 𝑟 (𝑥𝑖) = 𝑥 ′𝑖 (cf. Appen-
dix A.1) to derive its input, i.e., we apply a binning to match related
records to the same index. Both ℎ and 𝑟 are globally defined by the
exchange platform. We derive 𝑖𝑑𝑘𝑥 ′ ∈ 𝐾 as truncation of 𝑖𝑑𝑥 ′ ∈ 𝐻 ,
for the indexing of AES encryption keys 𝑘𝑥 ′ , i.e., the encryption key
can be derived using the identifying parameters 𝑥𝑖 only. Records

Privacy-Preserving Production Process Parameter Exchange ACSAC 2020, December 7–11, 2020, Austin, USA

Encrypt
Records

Operator B Key Server

Operator A Storage Server
Compute

Metric

Offload
Parameters

Retrieve
Bloom Filter

Retrieve
Enc. Keys

Data Provider(s)Client

Exchange PlatformII: Matching

III: Record Retrieval

I: Data Provision

Update
Bloom Filter

RetrieveDec. Keys

Get
Records

Generate
Keys (once)

1

3

4
5

6

7

Decrypt
Records

2

8

Figure 3: Our exchange platform is split into two compo-
nents to separate key material from shared ciphertexts.

can share an encryption key if 𝐾 ⊊ 𝐻 , i.e., fewer indices are avail-
able at the key server, which also handles the mapping (𝑖𝑑𝑘𝑥 ′, 𝑘𝑥 ′).
To reduce the computational overhead, a smaller set size 𝐾 is desir-
able (cf. Section 7.3). An encrypted parameter record 𝑐𝑥 ′ is further
defined as 𝑐 = 𝐸𝑘𝑥′ (𝑝). The storage server maintains the respective
pairs (𝑖𝑑𝑥 ′, 𝑐𝑥 ′). A single index 𝑖𝑑𝑥 ′ can refer to the ciphertexts of
multiple records due to the rounding with 𝑟 (𝑥) (to put records into
bins). By design, these ciphertexts also share their encryption key.

A similarity metric 𝑠 (𝑞) (cf. Appendix A.2), which should be
considered sensitive (G2), computes a candidate set 𝑆 from a client-
known initial record 𝑞. To compute 𝑆 , a client does not necessarily
require any payload data as records are indexed with their identify-
ing parameters 𝑥𝑖 only. The client eventually retrieves all records 𝑞′
with 𝑖𝑑𝑞′ ∈ 𝑆 that are available (indexed) at the exchange platform.

In the following, we provide a high-level design overview before
focusing on the entities. Subsequently, we detail BPE’s protocol.

5.2 Design Overview
We realize a privacy-preserving exchange platform (cf. Figure 3)
by splitting ciphertexts and key material over two independent
operators. To achieve privacy, our platform must be built up with
carefully selected operators (cf. Section 6.1) whomay not collude (to
ensure G1). Apart from this aspect, both clients and data providers
do not have to trust any other entity in our proposed architecture.

I: Data Provision. Data providers retrieve encryption keys 𝑘𝑥 ′
from the key server via oblivious transfer, encrypt their records 𝑝 ,
and then offload (cf. G3) their encrypted records 𝑐 , annotated with
the indices 𝑖𝑑𝑥 ′ to the storage server, which inserts the indices of
received records (from all data providers) into a single Bloom filter.
OTs hide the data providers’ access patterns from the key server.

II: Matching. Upon request, the client receives the Bloom filter
from the storage server. Then, starting with a known record 𝑞, the
client locally computes all indices that she is interested in (her
candidate set 𝑆) based on a similarity metric 𝑠 (her intellectual
property) and subsequently tests these indices 𝑖𝑑𝑞′ for membership
in the Bloom filter. The local matching provides client privacy (G2)
as the query content is not shared with another entity. Using a
Bloom filter, the storage server only shares a probabilistic data
structures of all inserted hashes and not the values or full indices.

III: Record Retrieval. If the client found an index that was inserted
into the Bloom filter, she retrieves the corresponding decryption key
𝑘𝑥 ′ from the key server via OT. She further purchases the respective
ciphertext from the storage server, which also triggers the billing
(out of scope for this paper) for this retrieval. Finally, she decrypts
the ciphertext 𝑐𝑥 ′ and gets access to the wanted parameter record.
Again, OTs hide the (clients’) access patterns from the key server.

After these three phases, the client is oblivious of data-sharing
providers (cf. G1), and assuming a proper billing mechanism, the
selling provider cannot identify the purchaser either (cf. G2). Fur-
ther, the client’s valuable similarity metric is kept private as the
client locally computes the matching (cf. G2). As all items are en-
crypted, the storage server is unaware of the mediated records (cf.
G1 and G2). Moreover, the key server is oblivious of requested and
transferred keys given that the respective communication places
via OTs (cf. G1 and G2). Finally, computationally expensive tasks
are mostly run at the client or data providers keeping the total
utilization of our platform providers comparatively low (cf. G4).

5.3 Entities and Trust Assumptions
Next, we detail all four involved entities to clearly understand their
individual responsibilities, interactions, and trust relationships as
well as how our platform incorporates their individual interests.

Data Provider(s).Given that potential providers invest resources
when collecting parameter records [1, 30, 38] and possibly share
their know-how with business partners or competitors, they are
only willing to contribute against compensation [94], e.g., pay-
ments, and despite a required participation overhead. Furthermore,
the data provider’s identity and valuable provided data must be
protected, i.e., no third party may get access to all records. To this
end, in our platform, we separate key material and ciphertexts by
relying on two non-colluding operators. To reward the provider, our
platform bills clients, i.e., data providers receive payments for their
records if clients retrieved them. Finally, to ease the participation,
our platform allows providers to offload data once, which is not
time-critical, and supports adding additional records at a later time.

Client(s). The privacy interests of clients are twofold. First, sim-
ilarity metrics are potentially valuable as they originate from on-
going research [38, 82] and, thus, must be protected accordingly.
Second, the initial input for the metric (i.e., a known record) is
sensitive as well since it might reveal internal information [16], e.g.,
production plans. Apart from privacy interests, clients should only
have to pay for retrieved data records to compensate providers.

While our design requires the client to reveal certain parts of her
candidate set 𝑆 , i.e., the matched (requested) indices to the storage
operator (e.g., to realize the billing), it completely relies on a local
matching, i.e., the metric as well as the initial input remain at the
client. Further, as the storage server is unable to decrypt or identify
the requested records, it cannot draw conclusions about this sensi-
tive information from the transmitted indices. Moreover, client and
key server only interact via OTs for potentially leaking requests,
i.e., the key server never learns anything about the client’s query.
Although, depending on the number of input parameters and the
used similarity metric, the matching can become time-consuming, it
is usually not very time-critical. For instance, injection molding pro-
ductions are planned weeks in advance [23] and, thus, a processing
of multiple days for the matching and retrieval is feasible.

Key Server. The interests of the key server operator are limited
to an ideally low computational and storage overhead. While the
generation of the key material for every possible index in a prelim-
inary phase temporarily generates a high workload and forces the
server to store all generated keys, the number of keys is limited by
the used OT set size. Thus, the key generation neither produces

ACSAC 2020, December 7–11, 2020, Austin, USA Pennekamp et al.

Client Key Server Storage Server Data Provider(s)

I:
D

at
a

P
ro

vi
si

on
II:

 M
at

ch
in

g
III

: R
ec

or
d

R
.

I.1: Hash Key Retrieval (R.)

I.2: Key Retrieval (OT)

I.3: Encryption

I.4: Sending

II.6: Bloom Filter Retrieval

II.5: Hash Key Retrieval

III.8: Key Retrieval (OT)

III.9: Record Retrieval
Payment

II.7: Matching

III.10: Decryption

For readability, we omit
authentication and reg-

istration here. We include
it in our implementation.

Figure 4: Sequence chart detailing the messages of BPE

significant overhead nor requires excessive storage. Although data
transfers via OTs are known to be computationally expensive and
time-consuming [2], a fundamental requirement is to meet the in-
terests of key-retrieving providers and clients, i.e., OTs prevent
any information leakage from these entities [29, 60], including the
number of transferred keys [18]. Hence, except for non-collusion
with the storage server, no trust in the key server is required.

Storage Server. In terms of computation, the interests of the
storage key server operators are aligned, i.e., low overhead is desir-
able. Since the storage server only maintains the Bloom filter (i.e.,
inserts new records) as well as shares it and requested data with
interested clients, no expensive computations are performed.

However, in our design the storage server operator has a very
sensitive task, i.e., the storage server operator must not collude
with any of the data providers and the key server, and therefore
must be chosen carefully (cf. Section 6.1). While the operator must
observe the indices of offloaded and requested records to enable
billing, this knowledge does not allow for conclusions on any of the
sensitive information, e.g., the client’s similarity metric 𝑠 (𝑞). Only
if the storage server operator colludes with the key server operator
or the offloading provider and therefore gains insight into requested
data, conclusions about the client’s candidate set are possible.

Overall, BPE requires no trust between clients and data providers
and relies on the key server and storage server operators to not collude,
i.e., to ensure provider privacy, and the storage server operator to not
collude with data providers to realize client privacy. We propose suit-
able server operators in Section 6.1, and further consider more complex
variants, offering additional security guarantees in Section 8.2.

5.4 Protocol Sequence
Figure 4 outlines all exchanged messages of our three-phased BPE
design in more detail whose meanings we break down now.

I: Data Provision. Initially, (I.1) data providers request a hash
key from the key server to compute all needed indices 𝑖𝑑𝑥 ′ , which
(a) prevents the storage server operator from concluding the stored
data by brute-forcing the indices and (b) increases the variability
of indices allowing to reduce their size. Subsequently, (I.2) the
provider requests key material 𝑖𝑑𝑘𝑥 ′ from the key server via OT
to (I.3) then encrypt the records. Finally, (I.4) the provider sends
the encrypted records and their indices to the storage server.

II: Matching. In advance of the actual matching process, the
client requests (II.5) the hash key from the key server and (II.6)

the Bloom filter from the storage server. The hash key enables the
client to (II.7) derive the indices of candidates, i.e., her candidate
set 𝑆 , computed by her metric 𝑠 (𝑞) based on input 𝑞 by checking
whether the received Bloom filter contains the respective indices.

III: Record Retrieval. After matches have been determined,
the client (III.8) retrieves the required decryption keys 𝑖𝑑𝑘𝑥 ′ via
OTs from the key server and (III.9) requests the encrypted records
𝐸𝑘𝑥′ (𝑝) from the storage server using the matching indices 𝑖𝑑𝑥 ′
which consequently triggers a payment process. Finally, (III.10)
the client decrypts the retrieved ciphertexts to obtain the records.

Afterward, the parameter exchange with this client is concluded.

6 REAL-WORLD REALIZATION
For our injection molding scenario, we give an overview of suitable
platform operators that underline its real-world deployability (G3).
Then, we detail the libraries of our fully-tested implementation.

6.1 Exchange Platform Operators
To realize the claimed privacy guarantees, our design requires non-
colluding platform components. Consequentially, key and storage
server must be hosted by different stakeholders. As described in
Section 5.3, both servers require different levels of trust. The key
server is oblivious of key retrievals. Hence, no trust is required.
Accordingly, it can be operated by an untrusted third party. Here,
startups that charge a small fee for each key retrieval come to mind.
When using a trusted third party, the key retrieval (during data pro-
vision and record retrieval) could be implemented without oblivious
transfers. However, as we detail in Section 7, the matching phase
is responsible for most of the runtime in real-world settings. Thus,
we prefer an OT-based retrieval without any trust assumptions.

The storage server is more critical for both provider and client
privacy. On the one hand, this server learns the ciphertexts of stored
records and the associated data providers. On the other hand, the
storage server is aware of the clients’ matches. Therefore, pub-
lic organizations or the government are well-suited for hosting
the storage server. Concerning our injection molding scenario (cf.
Section 2.1), suitable organization are the Association of German
Engineers (VDI) [85] or the Mechanical Engineering Industry Associ-
ation (VDMA) [86]. These organizations are already semi-trusted by
injection molding businesses and usually funded through member-
ship fees. Hence, they are more appropriate to operate the storage
server than a (random) untrusted, potentially unreliable third party.

Using our design, we do not require any trust between (all) clients
and (all) data providers, facilitating the parameter exchange, as each
of them only interacts with the (semi-trusted) storage server.

The costs of both entities could be covered by a participation fee
paid by all participants of the exchange platform. Another possibil-
ity is a per operation fee, e.g., for each key and record retrieval.

6.2 Implementation
We implemented a client and a data provider application, as well as
the exchange platform in Python 3. For OTs, we utilize libOTe [64]
and select the semi-honest 1-out-of-𝑛 OT algorithm KKRT16 [42].
For PSIs (cf. Section 8.2), we rely on libPSI [65] and choose the semi-
honest PSI algorithm KKRT16 [42]. We call them using Cython [4].

Privacy-Preserving Production Process Parameter Exchange ACSAC 2020, December 7–11, 2020, Austin, USA

Pybloomfiltermmap3 [59] serves as our underlying Bloom filter.
For its transmission, we utilize the library’s base64 export. We
realize both servers as Flask [68] applications with Celery [76] as a
task queue utilizing a Redis [71] broker. Celery workers handle OT
and PSI endpoints as well as Bloom filter updates at the storage.

The server APIs are realized as RESTful JSON APIs that require
HTTP basic authentication using the authorization header field.
All communication between applications and the server APIs are
protected by TLS 1.2 [27]. We decided to calculate the TLS overhead
for OTs and PSIs (cf. Section 7.1 for details). The storage server relies
on SQLite [80] while the key server keeps all keys in memory.

7 EVALUATION OF BPE
As performance (G4) is a critical aspect to realize a real-world
deployable solution (G3), we now evaluate BPE. In Section 7.1, we
present our experimental setup for all measurements. Afterward, we
show BPE’s real-world feasibility in four individual steps. First, in
Section 7.2, we investigate the scalability of our integrated building
blocks. Then, in Section 7.3, keeping the previous results inmind, we
analyze the performance of our three-step protocol with generated
data, before evaluating it using our real-world use case and realistic
queries in the domain of injectionmolding in Section 7.4. Finally, we
demonstrate our design’s universality based on a second real-world
use case dealing with machine tools in Section 7.5.

7.1 Experimental Setup
For all measurements, we utilized a single server (2x Intel XeonSil-
ver 4116 and 196GB RAM) and performed 10 runs each. All entities
ran on the same machine and communicated over the loopback
interface. We measured the data volume with tcpdump [39] and, if
applicable, configured latency and bandwidth with tcconfig [35].

We noticed an unreasonably out-of-scale overhead in the (un-
supported) TLS endpoints of libOTe and libPSI forcing us to add the
expected overhead arithmetically. To this end, we evaluated the TLS
handshake overhead (53.94ms) and the maximum TLS throughput
(567.16MBit/s) on our evaluation server using Flask’s TLS settings
(TLS 1.2, ECDHE-RSA-AES256-GCM-SHA384, and the elliptic curve
secp256r1). If not stated otherwise, we included the calculated TLS
overhead based on these values (hatched in our plots). The hash key
and the encryption keys are 128 Bit long each. We only parallelized
the Bloom filter-based matching and the OT-based key retrieval.

7.2 Performance of BPE’s Used Building Blocks
Before evaluating the (combined) BPE design, we first investigate
the performance of our building blocks regarding the influence of
different parameters to show their applicability in real scenarios.

0 0.2 Bil 0.4 Bil 0.6 Bil 0.8 Bil 1.0 Bil
Capacity [#]

0
4
8

12
16
20

Si
ze

 [G
B]

Measured Theoretic

(a) Even huge capacities lead to
reasonable file sizes.

10 1 10 3 10 6 10 9 10 12 10 15 10 18

FP Rate

0.0

0.5

1.0

1.5

Si
ze

 [G
B]

Measured Theoretic

(b) The FP rate only has a linear
influence on the file size.

Figure 5: A larger capacity and a lower false positive (FP) rate
linearly influence the array length of the Bloom filter.

0 20 40 60 80 100
Number of OT Extensions [#]

0

5

10

15

20

Ti
m

e
[m

in
] 6MBit/s

 50MBit/s
100MBit/s
Unlimited

(a) A reduced bandwidth affects
the large transmissions of OTs.

0 20 40 60 80 100
Number of OT Extensions [#]

0

2

4

6

8

Ti
m

e
[m

in
] 300ms

250ms
200ms

150ms
100ms

 50ms
 0ms

(b) Latency impacts the commu-
nication overhead of costly OTs.

Figure 6: Both decreased bandwidth and increased latency
negatively influence the linear coefficient when considering
the number of OTs and the processing time.

We thus examine the influences on capacity and FP rate on the size
of Bloom filters, the runtime of OTs given different bandwidth limits
and latencies, and the candidate set size 𝑆 for different metrics.

7.2.1 Bloom Filter. The matching phase of BPE relies on a Bloom
filter to enable the checking for specific indices. Thus, we evaluate
two parameters of relevance, which both affect the size, i.e., increase
the amount of data that must be transferred to clients. First, the
capacity limits the maximal number of supported indices. Second,
the FP rate determines the probability of incorrect membership
tests, i.e., an index is not available even though the test is positive.

We chose to evaluate capacities up to 1 Bil. elements (with a
fixed FP rate of 10−20) as an excessive upper border. For our injec-
tion molding scenario, a capacity of 1Mio. is considered reasonable
by domain experts. As false positives result in the retrieval of un-
wanted records, the FP rate must be configured as small as possible.
Accordingly, we consider values up to 10−20 (with the capacity fixed
at 100Mio. elements) to support billions of membership tests.

Figure 5 shows the influence of these parameters on the size. Due
to the used base64 encoding, we exceed the calculated theoretic
optimum. Even for immense capacities, the size is reasonable due
to its linear scaling with the capacity (cf. Figure 5a). Nowadays, one-
time transmissions (to clients) of less than 20GB are realistic [19].
Notably, the size increases linearly for an exponentially decreasing
FP rate. Thus, even small FP rates (e.g., 10−20) yield feasible sizes.

Further, the query and insert times are relevant for the matching
as well as the provision phase. We detail in Appendix B.1 that while
the performance of the query time is mostly unaffected by both
capacity and FP rate, and only depends on the number of performed
queries, the insert times increase approximately linear with both
increased capacity and FP rate. However, the data provision is a one-
time activity and occurs with time delay. In the following, we fix
the capacity at 100Mio. elements as our injection molding scenario
is unlikely to exceed this value. We further set the FP rate to 10−20,
which results in a comparably small Bloom filter size (<2GB).

7.2.2 Oblivious Transfers. We rely on OTs for the data provision
and record retrieval. By considering legitimate businesses, which
are bound to a jurisdiction, we can reasonably rely on a semi-honest
OT protocol [42], and thereby avoid unnecessary protocol overhead.

The runtime is mainly influenced by the set size (total number
of keys) and the number of OT extensions (number of retrieved
keys). A large set size 𝐾 is desirable as more distinct encryption
keys can be handled by the key server, i.e., fewer records share their
encryption keys. The number of retrieved keys depends (i) on the
number of sharable records at the data provider and (ii) the number
of matches at the client, which are both highly use case-specific.

ACSAC 2020, December 7–11, 2020, Austin, USA Pennekamp et al.

1 100 200 300 400 500 600 700 800 900 1000
Uploads [#]

0

10

20

30

40

50

60

Ti
m

e
[s

]

Hash Key Retrieval (R.) Key R. (OT) OT TLS Encryption Sending

Figure 7: Obliviously obtaining the encryption keys is the
most time-consuming step when offloading data records.

Aswe outline in Appendix B.2, the runtime of the OTs scales both
linearly with an increased set size and the number of performed
OT extension. We fix the set size at 220, which allows for more than
1Mio. distinct keys. Thus, in our injection molding use case, each
record could be encrypted with an individual key. For this set size,
the retrieval of 200 keys takes less than 70 s (cf. Appendix B.2).

In Figure 6, we detail the influence of realistic network condi-
tions [5, 19, 91] on OTs in terms of latency and bandwidth. We limit
the bandwidth asynchronously (labels correspond to server-client
speed). The client-server link is restricted to 1/10 to mimic common
broadband connections. Both latency and reduced bandwidth add a
factor to the overhead of additional OTs. However, even for a large
latency of 300ms, 100 OT extensions are executed in ≈6 minutes.
Similarly, a severely constrained bandwidth (6MBit/s) adds only
30min overhead. While the data provision is not time-critical, sev-
eral days for client requests are acceptable (cf. injection molding).
Thus, we can tolerate slow Internet links with significant latency.

OT protocols balance the trade-off between computation and
communication overhead differently [2]. Hence, the underlying OT
protocol can be selected based on use case-specific needs.

7.2.3 Similarity Metrics. The matching phase of BPE is driven by
the number of elements that the similarity metric 𝑠 (𝑞) returns as
each element must be tested for membership in the Bloom filter.
Even today, membership tests are time-consuming if the candidate
set 𝑆 grows very large. A usable metric for transfer learning in
injection molding is able to evaluate the similarity of two processes,
hence, how data from a different process can substitute missing
training data of the process, whichmust bemodeled. Today, sensible
real-world metrics are still being actively researched [38, 82].

The number of elements further depends on the exact representa-
tion of parameters. For example, a fine-granular rounding results in
more values for the same interval of potentially interesting records.
An increase of the granularity of one parameter (𝑥 ′

𝑖
) yields a linear

increase of candidates while a granularity increase for all input
parameters (𝑥 ′1 to 𝑥 ′𝑛) results in an exponential blow-up of the can-
didate set 𝑆 . The number of input parameters 𝑛 is further influential
because 𝑆 grows exponential in the number of varied parameters.

Given that the similarity metric 𝑠 (𝑞) is solely computed at the
client, its performance does not impact the other parts of our design.

7.3 Combined Performance of BPE
We now combine the individual building blocks and look at the
overall performance of each phase. We treat the data providers (data
provision) and clients (matching and record retrieval) separately.

Data Provision. Figure 7 details the runtime when offloading
up to 1000 records and shows that the provision scales linearly with

0 100 200 300 400 500 600 700 800 900 1000
Results [#]

0

100

200

300

400

Ti
m

e
[s

]

|S| 29 Mio.
Hash Key R. Bloom R.

Matching
Key R. (OT)
OT TLS

Record R.
Decryption

Figure 8: The local computation of complex similarity met-
rics by the client dominates the retrieval of data records.

the number of records. Here, we used records with 100 parameters,
each representing a float chosen uniform at random. Accordingly,
all records have unique identifiers and require a unique key for en-
cryption. The key retrieval dominates this phase. The length of the
records only marginally influences the runtime (cf. Appendix B.3).

Matching and Record Retrieval. In contrast to the data pro-
vision, client requests can be time-critical and are use case-specific.

We offloaded records with 100 parameters and use 10 parameters
as input for the indexing (𝑛 = 10,𝑚 = 90). Each input parameter is
discretized to three digits. As similarity metric 𝑠 (𝑞), we computed
an offset of 0.5 % for each input record 𝑞. We ensured that sufficient
records are matched and available that the storage server. While
OTs mainly impact the provision, Figure 8 shows that the matching
dominates the client queries. Despite the good performance of
Bloom filters (cf. Section 7.2.1), the matching is expensive as it
results in a large candidate set 𝑆 of >29Mio. elements. While we
observe a runtime below 5min, real-world metrics might produce
sets that are magnitudes larger, further increasing the runtime.

Given that several days for client requests are feasible (cf. injection
molding), metrics with excessive candidate sets are possible as well.
Besides, testing for membership is embarrassingly parallelizable and
does not depend on external entities. Accordingly, clients can scale their
metrics to their constraints, i.e., time and computational resources.

7.4 Real-World Performance Measurements
To test the real-world applicability of our scenario (cf. Section 2),
we now operate on a total of 4620 genuine records, consisting of
28 parameters each. They describe the production of toy bricks.
For the optimization of the IM-machine settings during process
setup, each toy brick is defined by𝑚 = 21 geometry parameters,
while the remaining 𝑛 = 7 parameters describe 6 essential machine
settings (injection volume flow, melt temperature, mold tempera-
ture, packing pressure, packing pressure time, cooling time) and
one quality indicator (part weight). For other use cases than the
optimization of IM-machine settings during the process setup, the
data and its representation may differ. Here, sensitive information
is represented by the machine settings and the corresponding part
quality: Only combined with the identifying parameters, i.e., geom-
etry information, the data can be used for transfer learning. With
this indexing, we have a total of 60 indices, where each index points
to 77 unique records that contain varied machine parameters.

Data Provision. The entire provision takes less than 12 s (cf.
Appendix B.3) and is comparable to our previous experiment (cf.
Figure 7). Thus, even orders of magnitude more records are feasible.

Matching and Record Retrieval. We evaluated two poten-
tially used metrics to look into client queries. For metric IM-2%, we

Privacy-Preserving Production Process Parameter Exchange ACSAC 2020, December 7–11, 2020, Austin, USA

6000

6500

Ti
m

e
[s

]

IM-2% IM-2.5% TLS

Hash Key R. Bloom R. Matching Key R. (OT) Record R. Decryption
Phase

0

10

20

30

|S
|

1
M

io
.

|S
|

14
3

M
io

.
Figure 9: The larger candidate set produced by IM-2.5% leads
to a dominating matching phase for the full client request.

used a relative offset for all (21) input parameters of 2 % and for
IM-2.5%, a relative offset of 2.5 %. The rounding is set to two digits
for each input parameter. In our example, both metrics resulted in
a single match, i.e., the client retrieves the records corresponding
to a single index. As visualized in Figure 9, the matching quickly
dominates client queries, rendering the remaining steps negligible.

We again underline that the locally conducted membership tests
are the crucial factor. Keeping the use case-induced time constraints
(of several days) in mind, even metrics with significantly larger can-
didate sets can be supported. In conjunction with the virtually
irrelevant performance of offloading records, we thus conclude
that the performance of BPE is well-suited for a privacy-preserving
exchange of parameters in the domain of injection molding. There-
fore, it could greatly support the application and implementation
of transfer learning for the highly complex task of process setups.

To conclude, we showcased that BPE can handle client requests with
a large candidate set in a real-world setting. The one-time required
provision is negligible for the performance of BPE. Our client-sided
computation easily enables complex similarity metrics in the future.

7.5 Universally Applied Parameter Exchange
To showcase the applicability of our proposed exchange platform,
we now look into a second real-world use case, i.e., machine tools.

7.5.1 A Parameter Exchange for Machine Tools. For subtractive
manufacturing (turning and milling), major factors that affect the
workpiece quality and productivity are the machine tools and the
choice of the cutting parameters, such as cutting speed, feed rate,
and cutting depths. Traditionally, cutting parameters are deter-
mined based on experience or manufacturer-specific recommen-
dations. In a lengthy process, the machine operator starts with a
conservative value and then tunes the parameter through real tests.
While this approach yields acceptable results, it is time-consuming.

Thus, optimization methods are actively being researched [12,
26, 46]. Particle swarm optimization promises to obtain optimal
cutting parameters for certain requirements, such as roughness
and tool lifetime [46]. A model-based approach integrating real-
time process data actively combines quality measurement data [12].
Thereby, the potential for optimization of the cutting process can be
estimated, resulting in improved productivity. Similarly, Denkena
et al. [26] apply machine learning to determine the optimal cutting
parameters under consideration of the process outcome.

However, all optimization methods require detailed modeling of
the machining process and the machine tool, which is difficult and
not always feasible. Meanwhile, other companies may already have
optimized cutting parameters, ready for a parameter exchange.

Hash Key R. Bloom R. Matching PSI Prep. PSI Exec. Key R. (OT) Record R. Decryption
Phase

0

5

10

15

20

25

30

Ti
m

e
[s

]

|S
|=

11

|S
|=

11

|S
|=

70
1

|S
|=

70
1

Standard BPE PSI-based PPE
(Section 8.2)

MT-Material MT-Diameter TLS

Figure 10: Both metrics produce negligible overhead for the
matching. For these sizes, both BPE and PPE are feasible.

7.5.2 Evaluation. Here, we rely on a dataset with 600 records with
19 parameters each (𝑛 = 17,𝑚 = 2). Each record has a unique index.

Data Provision. Offloading all records is completed within 30 s
and, therefore, uncritical for any real setting and its providers.

Matching and Record Retrieval. For this second use case, we
evaluate two different client queries. First, forMT-Material, we only
vary the production material of a workpiece, i.e., the client wants to
produce an identical workpiece with another material. Second, for
MT-Diameter , we request parameters where the same workpiece
should be produced with a different milling cutter. To this end, we
iterate over the input defining the milling cutter’s diameter.

We detail the processing times for both metrics in Figure 10 (incl.
times of our PPE design variant, which we specifically elaborate on
in Section 8.2). Even though this use case does not impose any hard
time constraints, concluding the client query after less than 1min
is a fitting result. Given that we only vary a single input parameter
for each metric, the resulting candidate set is tiny compared to the
evaluated injection molding metrics. Thus, the (large) Bloom filter
and the key retrieval dominate the runtime of these client requests.

Here, we showed the further applicability of BPE on a second real-
world use-case, i.e., BPE also handles simple metrics efficiently.

8 PRACTICAL PRIVACY IMPROVEMENTS
In this section, we discuss the privacy provided by our BPE design.
Based on our findings in Section 8.1, we then propose two variants
that further improve provider and client privacy (G1 and G2).

8.1 Security Discussion
Given that we only operate with well-known and authenticated
entities, i.e., registered companies under known jurisdictions (cf.
Section 6.1), we focus on a semi-honest setting, i.e., we assume that
all entities follow the specified protocol as deviations are prosecuted.
Consequentially, we do not have to rely on more complex building
blocks, such as secret sharing [74], for our parameter exchange as
suitable (semi-trusted) operators are available in industrial settings.

The security goals of the design are twofold. First, provider
privacy (G1), i.e., protecting uploaded data records, and second,
client privacy (G2), i.e., hiding all queries, need to be considered.

Key Server. As all sensitive key retrievals are handled via OT,
the key server cannot harm provider and client privacy. While
colluding with data providers does not harm the client privacy,
colluding with the client could harm the provider privacy if cipher-
texts are retrieved illegitimately. A collusion of the operators of
key and storage servers is the main threat in our design as it can
result in plaintext access, violating both provider and client privacy.
However, we envision a storage server operator with a significant

ACSAC 2020, December 7–11, 2020, Austin, USA Pennekamp et al.

0 100 200 300 400 500 600 700 800 900 1000
Matches [#]

0

20

40

60

80

100

120

Ti
m

e
[s

]

|S| 0.3 Mio.

Hash Key R.
PSI Prep.

PSI Exec.
PSI TLS

Bloom R.
Matching

Key R. (OT)
OT TLS

Record R.
Decryption

Figure 11: In settings where ourmore secure PSI variant PPE
is applicable, it achieves comparable performance to BPE.

reputation (cf. Section 6.1) not willing to risk legal punishment.
Thus, we expect that this kind of misbehavior is unlikely.

Storage Server. As discussed in Section 5.3, BPE does not hide
the indices of client-requested records. Thus, it allows the storage
server to partially reconstruct the client’s candidate set, slightly
violating G2. However, inferring the similarity metric is infeasible
as neither the metric’s input nor the unmatched indices are known
to the server. Moreover, handing out the Bloom filter is a prob-
lematic step for provider privacy as the client obtains an encoded
representation of the available records. While Bloom filters do not
allow the retrieval of all stored items directly, brute-force attacks
could provide rough estimates, especially with a low FP rate. We
tolerate this slight violation of G1 to enable the local computation
of client metrics even in huge settings (up to billions of elements).

By using a hash key for indices computation, which is unknown
to the storage server, we increase both provider and client privacy
as the storage server cannot compute any index itself even if it is
aware of suitable input parameters. We achieve provider privacy as
requested records are only shared without their origins against a
payment. Similarly, providers are unaware of who paid for a record,
satisfying client privacy. In the case of unintended data leaks, we
protect records by utilizing different encryption keys to render
brute-force attacks infeasible. Other misbehavior can by retraced
through access logs at both key and storage servers. We leave an
analysis of the implications of joining these logs for future work.

To summarize, the security foundations of BPE build on the sepa-
ration of key material and ciphertexts. To ensure client privacy, the
storage server may not collude with data providers either. To fur-
ther improve provider and client privacy at the expense of additional
overhead, we take a look at possible design variants in the following.

8.2 Design Variants
To achieve adaptability (G5), we propose two variants to improve
the privacy for settings where BPE is currently insufficient. We
evaluate a variant with PSIs, which improves provider privacy. We
further design a fully OT-based concept for enhanced client privacy.

8.2.1 PPE: A PSI-based Approach. To prevent potential informa-
tion leaks through the Bloom filter, i.e., a list indicating all available
indicies shared with every client, we also propose a design variant
that replaces the Bloom filter-based matching with a PSI (cf. Appen-
dix C.1). By using PSIs, clients only learn the matching elements
and cannot brute force the complete set of all available records.

However, due to the limited supported size of the candidate
set 𝑆 in PPE, we favor BPE over PPE despite its weaker provider
privacy. In settings, with specific privacy needs and comparable
small candidate sets, PPE can be a suitable, more secure alternative.

PPE Performance. We repeated the setting from Section 7.3
with a PPE-feasible sized candidate set 𝑆 through a relative offset of
0.3 % with only 0.3Mio. elements (compared to 29Mio. elements).
Figure 11 visualizes the performance results and compares them
to BPE. By design, only the matching phases differ and in this
setting, the PSI introduces slight overhead when compared to BPE.
In Appendix C.2, we detail the linear influences of set size, latency,
and bandwidth on the PSI performance in a building block analysis.

We also evaluate IM-2% in Appendix C.3 showing a larger PSI
overhead. Moreover, we measured our second use case (cf. Sec-
tion 7.5.1) with PPE as its small candidate sets are well-suited.
Figure 10 shows a comparison of BPE and PPE for both metrics. In
this use case, the download of the large Bloom filter even outweighs
the PSI execution time, such that PPE results in a shorter runtime.

PPE can provide improved provider privacy. However, small can-
didate sets are essential for the use of PSIs. Hence, in general, it is
infeasible for injection molding with potentially large candidate sets.

8.2.2 OPE: Fully OT-Powered Approach. Given that the storage
server learns the identifiers of retrieved records, client privacy
is impaired. To mitigate this effect, the record retrieval could be
realized over OTs as well (similar to the key retrieval). The resulting
approach, OPE, is conceptually similar to work by Dahlmanns et
al. [21]: First, the matching is computed via a PSI (cf. Section 8.2.1)
and then both keys and ciphertexts (records) are retrieved via OTs.

However, relying on OTs for the data retrieval introduces signif-
icant limitations. LibOTe can only transmit 128 Bit per OT because
OTs are mainly designed for the transmission of key material and
not the payload itself [2]. However, our ciphertexts are signifi-
cantly larger, ultimately depending on the use case. Accordingly, 𝑡
subsequent OTs are needed to retrieve a single ciphertext, which
increases the overhead by factor 𝑡 . More importantly, the OT set
size defines the number of supported indices. Consequentially, only
a low number of records can be handled by the exchange platform.

These limitations highlight that OPE is only applicable to small
scenarios with strong privacy needs. We expect that it is not applicable
to most use cases and thus refrain from further evaluation.

9 RELATEDWORK
Next, we present related work dealing with privacy-preserving
information retrieval and discuss towhich extent they are applicable
to our scenario. In Table 1, we give an overview of our findings.

Private information retrieval (PIR) [17] protocols deal with privacy-
preserving data retrieval from a database. However, PIR protocols
only consider the client’s privacy, i.e., the query is hidden from the
database server, while the server’s privacy (G1) is not protected.
Accordingly, this class of protocols [17, 49] is not applicable to our
scenario, as the client is not allowed to learn anything beyond the
matching records. Oblivious transfer (OT) [60], which is used as a
building block of our design, represents symmetric PIR. While it
can provide a high level of privacy, OTs alone are not feasible for
transmitting large amounts of data, as explained in Section 8.2.2.

Other primitives for secure computations, such as secure multi-
party computation (SMC) [89] and homomorphic encryption (HE) [31],
can be used for privacy-preserving information retrieval as well [95].
However, SMC comes with high overhead (G4) and does not reach
the efficiency of purpose-driven protocols for private information

Privacy-Preserving Production Process Parameter Exchange ACSAC 2020, December 7–11, 2020, Austin, USA

Table 1: A classification of relatedwork and their properties.

Approach Client
Privacy

Server
Privacy Feasibility Trust As-

sumptions

PIR [17]
RKS [21]
SSE [77]
PKSE [8]
PPSSI [24]
PDBQ [9]
BPE / PPE

/ /
retrieval [24]. HE approaches that mimic such protocols suffer from
the same inefficiency [50]. In addition, supporting arbitrary similar-
ity metrics (G3) with an HE scheme is infeasible as it either offers
only a restricted set of operations or becomes overly complex [28].

The privacy-preserving remote knowledge system (RKS) [21] tack-
les the feasibility of data retrievals via OT. A PSI determines match-
ing elements, such that only matched elements induce an expensive
OT. We base PPE on this approach. However, limitations of the PSI
restrict the size of the candidate set, as discussed in Section 8.2.

Both symmetric searchable encryption (SSE) [77] and public-key
searchable encryption (PKSE) [8] allow the delegation of a search
operation to an untrusted third party, e.g., a cloud service. These
approaches encrypt data and search queries. The third party returns
matched elements to the client without learning the plaintexts. Ap-
plied to our scenario, data providers could upload their (encrypted)
data. Then, clients could send a search query. However, both ap-
proaches assume that the party delegating the search, i.e., the client,
is allowed to freely access all stored data without restrictions. Ac-
cordingly, they cannot satisfy the required server privacy (G1).

Privacy-preserving sharing of sensitive information (PPSSI) [24]
considers related design goals, i.e., demanding both client and server
privacy (G1 andG2). This approach introduces a semi-trusted third
party, called isolated box (IB), that must be non-colludingwith client
and server. It cannot access plaintext information on its own. The
data represents database records with multiple attributes that allow
the client to pose disjunctive queries over multiple attributes. How-
ever, conjunctive queries are not supported. Disjunctive queries are
not useful in our scenario as all input parameters have to match
the client’s candidate. Additionally, PPSSI only considers a single
data source (the server), while we have to support multiple data
providers. The encryption process, which is offloaded to the IB,
requires knowledge on how many records with a certain attribute-
value pair exist. Accordingly, the encryption cannot independently
be outsourced from the server to the data providers (G3). Therefore,
adapting this approach to our scenario is far from trivial.

The approach of private database queries using SWHE (PDBQ) [9]
extents the PPSSI solution by conjunctive queries. However, it also
assumes that the data is provided by one server, which is actively
involved in the data exchange. Moreover, PDBQ requires the compu-
tation of an inverted index by the server entity. Due to the fact that
this computation needs plaintext access to the stored data, an addi-
tional semi-trusted storage server cannot perform it, i.e., computing
the inverted index requires information on how many records with
a certain attribute-value pair exist. Hence, the challenge of adapt-
ing it to multiple independent data providers, as required by our
scenario, remains. Additionally, we expect that PDBQ does not

scale to our scenario (G4) as it was only evaluated with up to 5
attribute-value pairs and our scenario calls for significantly more
query parameters, each adding a random linear combination.

While many diverse applications in the area of private information
retrieval exist, they are inapplicable to our scenario as existing work
either results in reduced server privacy or requires significant adoption
effort for our scenario. We bridge this gap by proposing BPE and PPE,
two variants of privacy-preserving exchange platforms.

10 CONCLUSION
In this paper, we introduced a new design for the industrial setting
to enable the privacy-preserving exchange of production process
parameters, which is expected to significantly improve productivity
and reduce costs alike. BPE is based on existing (cryptographic)
building blocks, i.e., Bloom filters and OTs, and respects the privacy
needs of both clients and data providers. For scenarios with fewer
records and stronger privacy needs, we also propose a PSI-based
variant called PPE. We showcase the applicability and relevance
of our approaches based on two real-world use cases: (i) a process
parameter retrieval for injection molding, which allows companies
to integrate external knowledge into their transfer learning, and (ii)
an exchange for machine tool parameters which enables companies
to improve their machine settings even for individual workpieces.

We conducted an in-depth analysis of all aspects of our design.
Our evaluation shows that BPE scales well to today’s real-world
needs (both in terms of privacy and processing) and is easily de-
ployable as no specific hardware is required. Especially in scenarios
where the exchanged production data is valuable and impactful for
retrieving companies, the processing times for privacy preservation
of our design are generally acceptable. Thus, settings with sensitive
metrics, such as injection molding, are prime candidates for BPE.

Future work should look into concepts that rate the value of
exchanged process data and, thereby, enable new business models
for data-providing companies. Similarly, research could look into
ways to transform the platform into a subscription model to ease
the billing process. Measures to improve the auditability of trans-
fered (and queried) records could be researched to address potential
accountability needs of companies. By releasing BPE and PPE as
open-source, we hope to contribute to realize newly envisioned in-
dustrial collaborations: We offer a ready-to-use privacy-preserving
architecture to address widely-established privacy concerns.

ACKNOWLEDGMENTS
This work is funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strat-
egy – EXC-2023 Internet of Production – 390621612.

REFERENCES
[1] Alejandro Alvarado Iniesta, Jorge L García Alcaraz, and ManuelIván Ro-

dríguez Borbón. 2013. Optimization of injection molding process parameters by
a hybrid of artificial neural network and artificial bee colony algorithm. Revista
Facultad de Ingeniería Universidad de Antioquia 67 (2013), 43–51.

[2] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2013.
More Efficient Oblivious Transfer and Extensions for Faster Secure Computation.
In Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS ’13). ACM, 535–548. https://doi.org/10.1145/2508859.2516738

[3] Donald Beaver. 1996. Correlated Pseudorandomness and the Complexity of
Private Computations. In Proceedings of the 28th Annual ACM Symposium on

https://doi.org/10.1145/2508859.2516738

ACSAC 2020, December 7–11, 2020, Austin, USA Pennekamp et al.

Theory of Computing (STOC ’96). ACM, 479–488. https://doi.org/10.1145/237814.
237996

[4] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Sel-
jebotn, and Kurt Smith. 2011. Cython: The Best of Both Worlds. Computing in
Science & Engineering 13, 2 (2011), 31–39. https://doi.org/10.1109/MCSE.2010.118

[5] David Belson. 2017. State of the Internet Report — Q1 2017 report. Technical Report.
Akamai Technologies.

[6] R. Joseph Bensingh, Rajendra Machavaram, Sadayan Rajendra Boopathy, and
Chidambaram Jebaraj. 2019. Injection molding process optimization of a bi-
aspheric lens using hybrid artificial neural networks (ANNs) and particle swarm
optimization (PSO). Measurement 134 (2019), 359–374. https://doi.org/10.1016/j.
measurement.2018.10.066

[7] Burton H. Bloom. 1970. Space/Time Trade-Offs in Hash Coding with Allowable
Errors. Commun. ACM 13, 7 (1970), 422–426. https://doi.org/10.1145/362686.
362692

[8] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano.
2004. Public Key Encryption with Keyword Search. In Proceedings of the Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques (EU-
ROCRYPT ’04). Springer, 506–522. https://doi.org/10.1007/978-3-540-24676-3_30

[9] Dan Boneh, Craig Gentry, Shai Halevi, FrankWang, andDavid J.Wu. 2013. Private
Database Queries Using Somewhat Homomorphic Encryption. In Proceedings of
the 11th International Conference on Applied Cryptography and Network Security
(ACNS ’13). Springer, 102–118. https://doi.org/10.1007/978-3-642-38980-1_7

[10] Rainer Bourdon, Andreas Hellmann, Jan-Bernd Schreckenberg, and Ralf Schweg-
mann. 2010. Sind Wechselwirkungen simulierbar? Prozessoptimierung beim
Spritzgießen mit statistischer Versuchsplanung. Kunststoffe 10 (2010), 526.

[11] Rainer Bourdon, Andreas Hellmann, Jan-Bernd Schreckenberg, and Ralf Schweg-
mann. 2012. Standardized optimization of process and quality by DOE methods
— a short manual for injection molding in practice. Journal of Plastics Technology
8, 5 (2012), 525–549.

[12] Christian Brecher, Marian Wiesch, and Frederik Wellmann. 2019. Productivity
Increase –Model-based optimisation of NC-controlledmilling processes to reduce
machining time and improve process quality. IFAC-PapersOnLine 52, 13 (2019),
1803–1807. https://doi.org/10.1016/j.ifacol.2019.11.463

[13] Daniele Catteddu. 2010. Cloud Computing: Benefits, Risks and Recommendations
for Information Security. In Proceedings of the Iberic Web Application Security
Conference (IBWAS ’10). Springer. https://doi.org/10.1007/978-3-642-16120-9_9

[14] Ceresana. 2016. Plastic Injection Market Report. Technical Report. Ceresana.
[15] Wen-Chin Chen, Min-Wen Wang, Chen-Tai Chen, and Gong-Loung Fu. 2009. An

integrated parameter optimization system for MISO plastic injection molding.
The International Journal of Advanced Manufacturing Technology 44, 5–6 (2009),
501–511. https://doi.org/10.1007/s00170-008-1843-4

[16] Sujit Rokka Chhetri, Sina Faezi, and Mohammad Abdullah Al Faruque. 2017. Fix
the Leak! An Information Leakage Aware Secured Cyber-Physical Manufacturing
System. In Design, Automation & Test in Europe Conference & Exhibition (DATE
’17). IEEE, 1408–1413. https://doi.org/10.23919/DATE.2017.7927213

[17] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. 1995. Private
Information Retrieval. In Proceedings of IEEE 36th Annual Foundations of Computer
Science (FOCS ’95). IEEE, 41–50. https://doi.org/10.1109/SFCS.1995.492461

[18] Cheng-Kang Chu and Wen-Guey Tzeng. 2005. Efficient k-Out-of-n Oblivious
Transfer Schemes with Adaptive and Non-adaptive Queries. In Proceedings of the
8th International Workshop on Theory and Practice in Public Key Cryptography
(PKC ’05). Springer, 172–183. https://doi.org/10.1007/978-3-540-30580-4_12

[19] Cisco. 2020. Cisco Annual Internet Report (2018–2023) White Paper. White Paper.
Cisco.

[20] Li Da Xu, Wu He, and Shancang Li. 2014. Internet of Things in Industries:
A Survey. IEEE Transactions on Industrial Informatics 10, 4 (2014), 2233–2243.
https://doi.org/10.1109/TII.2014.2300753

[21] Markus Dahlmanns, Chris Dax, Roman Matzutt, Jan Pennekamp, Jens Hiller,
and Klaus Wehrle. 2019. Privacy-Preserving Remote Knowledge System. In
Proceedings of the 2019 IEEE 27th International Conference on Network Protocols
(ICNP ’19). IEEE. https://doi.org/10.1109/ICNP.2019.8888121

[22] Paolo D’Arco, María Isabel González Vasco, Angel L. Pérez del Pozo, and Claudio
Soriente. 2012. Size-Hiding in Private Set Intersection: Existential Results and
Constructions. In Proceedings of the 5th International Conference on Cryptology
in Africa (AFRICACRYPT ’12). Springer, 378–394. https://doi.org/10.1007/978-3-
642-31410-0_23

[23] Satyaki Ghosh Dastidar and Rakesh Nagi. 2005. Scheduling injection molding
operations with multiple resource constraints and sequence dependent setup
times and costs. Computers & Operations Research 32, 11 (2005), 2987–3005.
https://doi.org/10.1016/j.cor.2004.04.012

[24] Emiliano De Cristofaro, Yanbin Lu, and Gene Tsudik. 2010. Privacy-preserving
Sharing of Sensitive Information. Cryptology ePrint Archive 2010/471.

[25] Emiliano De Cristofaro and Gene Tsudik. 2010. Practical Private Set Intersection
Protocols With Linear Complexity. In Proceedings of the 14th International Con-
ference on Financial Cryptography and Data Security (FC ’10). Springer, 143–159.
https://doi.org/10.1007/978-3-642-14577-3_13

[26] Berend Denkena, Marc-André Dittrich, and Florian Uhlich. 2016. Self-optimizing
Cutting Process Using Learning Process Models. Procedia Technology 26 (2016),
221–226. https://doi.org/10.1016/j.protcy.2016.08.030

[27] Tim Dierks and Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol
Version 1.2. IETF RFC 5246.

[28] Wenxiu Ding, Zheng Yan, and Robert H. Deng. 2017. Encrypted data processing
with Homomorphic Re-Encryption. Information Sciences 409–410 (2017), 35–55.
https://doi.org/10.1016/j.ins.2017.05.004

[29] Shimon Even, Oded Goldreich, and Abraham Lempel. 1985. A Randomized
Protocol for Signing Contracts. Commun. ACM 28, 6 (1985), 637–647. https:
//doi.org/10.1145/3812.3818

[30] Huang Gao, Yun Zhang, Xundao Zhou, and Dequn Li. 2018. Intelligent Methods
for the Process Parameter Determination of Plastic Injection Molding. Frontiers
of Mechanical Engineering 13, 1 (2018), 85–95. https://doi.org/10.1007/s11465-
018-0491-0

[31] Craig Gentry. 2009. Fully Homomorphic Encryption Using Ideal Lattices. In
Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC
’09). ACM, 169–178. https://doi.org/10.1145/1536414.1536440

[32] René Glebke, Johannes Krude, Ike Kunze, Jan Rüth, Felix Senger, and KlausWehrle.
2019. Towards Executing Computer Vision Functionality on Programmable
Network Devices. In Proceedings of the 1st ACM CoNEXT Workshop on Emerging
in-Network Computing Paradigms (ENCP ’19). ACM, 15–20. https://doi.org/10.
1145/3359993.3366646

[33] Lars Gleim, Jan Pennekamp, Martin Liebenberg, Melanie Buchsbaum, Philipp
Niemietz, Simon Knape, Alexander Epple, Simon Storms, Daniel Trauth, Thomas
Bergs, Christian Brecher, Stefan Decker, Gerhard Lakemeyer, and Klaus Wehrle.
2020. FactDAG: Formalizing Data Interoperability in an Internet of Production.
IEEE Internet of Things Journal 7, 4 (2020), 3243–3253. https://doi.org/10.1109/
JIOT.2020.2966402

[34] Fatma Hentati, Ismail Hadriche, Neila Masmoudi, and Chedly Bradai. 2019.
Optimization of the injection molding process for the PC/ABS parts by in-
tegrating Taguchi approach and CAE simulation. The International Journal
of Advanced Manufacturing Technology 104, 9–12 (2019), 4353–4363. https:
//doi.org/10.1007/s00170-019-04283-z

[35] Tsuyoshi Hombashi. 2016. Tcconfig. https://github.com/thombashi/tcconfig.
[36] Christian Hopmann, Pascal Bibow, Thomas Kosthorst, and Yannik Lockner. 2020.

Process setup in injection moulding by Human-Machine-Interfaces and AI. In
Proceedings of the 30th International Colloquium Plastics Technology.

[37] Christian Hopmann and Julian Heinisch. 2018. Injection Molding Setup by Means
of Machine Learning Based on Simulation and Experimental Data. In Proceedings
of the 76th SPE Annual Technical Conference and Tradeshow (ANTEC ’18). Society
of Plastics Engineers, 269–274.

[38] Christian Hopmann, Sabina Jeschke, Tobias Meisen, Thomas Thiele, Hasan Ter-
can, Martin Liebenberg, Julian Heinisch, and Matthias Theunissen. 2019. Com-
bined learning processes for injection moulding based on simulation and experi-
mental data. In Proceedings of the 33rd Polymer Processing Society Annual Meeting
(PPS ’17), Vol. 2139. AIP, 152–156. https://doi.org/10.1063/1.5121656

[39] Van Jacobson, Craig Leres, and Steven McCanne. 1988. TCPDUMP/LIBPCAP
public repository. https://www.tcpdump.org/.

[40] Sabina Jeschke, Christian Brecher, Tobias Meisen, Denis Özdemir, and Tim Es-
chert. 2017. Industrial Internet of Things and Cyber Manufacturing Systems.
Springer. https://doi.org/10.1007/978-3-319-42559-7_1

[41] Miran Kim and Kristin Lauter. 2015. Private genome analysis through homo-
morphic encryption. BMC Medical Informatics and Decision Making 15 (Suppl 5)
(2015). https://doi.org/10.1186/1472-6947-15-S5-S3

[42] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. 2016. Ef-
ficient Batched Oblivious PRF with Applications to Private Set Intersection. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’16). ACM, 818–829. https://doi.org/10.1145/2976749.2978381

[43] Davorin Kramar and Djordje Cica. 2017. Predictive model and optimization of
processing parameters for plastic injection moulding. Materials and Technology
51, 4 (2017), 597–602. https://doi.org/10.17222/mit.2016.129

[44] Andrew Kusiak. 2017. Smart manufacturing must embrace big data. Nature 544,
7648 (2017), 23–25. https://doi.org/10.1038/544023a

[45] Zhi Li, Layne Liu, Ali Vatankhah Barenji, and Waiming Wang. 2018. Cloud-
based Manufacturing Blockchain: Secure Knowledge Sharing for Injection Mould
Redesign. Procedia CIRP 72, 1 (2018), 961–966. https://doi.org/10.1016/j.procir.
2018.03.004

[46] Hrelja Marko, Klancnik Simon, Irgolic Tomaz, Paulic Matej, Balic Joze, and Bre-
zocnik Miran. 2014. Turning Parameters Optimization Using Particle Swarm
Optimization. Procedia Engineering 69 (2014), 670–677. https://doi.org/10.1016/j.
proeng.2014.03.041

[47] Mohammad Saleh Meiabadi, Abbas Vafaeesefat, and Fatemeh Sharifi. 2013. Opti-
mization of plastic injection molding process by combination of artificial neural
network and genetic algorithm. Journal of Optimization in Industrial Engineering
6, 13 (2013), 49–54.

https://doi.org/10.1145/237814.237996
https://doi.org/10.1145/237814.237996
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1016/j.measurement.2018.10.066
https://doi.org/10.1016/j.measurement.2018.10.066
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-642-38980-1_7
https://doi.org/10.1016/j.ifacol.2019.11.463
https://doi.org/10.1007/978-3-642-16120-9_9
https://doi.org/10.1007/s00170-008-1843-4
https://doi.org/10.23919/DATE.2017.7927213
https://doi.org/10.1109/SFCS.1995.492461
https://doi.org/10.1007/978-3-540-30580-4_12
https://doi.org/10.1109/TII.2014.2300753
https://doi.org/10.1109/ICNP.2019.8888121
https://doi.org/10.1007/978-3-642-31410-0_23
https://doi.org/10.1007/978-3-642-31410-0_23
https://doi.org/10.1016/j.cor.2004.04.012
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1016/j.protcy.2016.08.030
https://doi.org/10.1016/j.ins.2017.05.004
https://doi.org/10.1145/3812.3818
https://doi.org/10.1145/3812.3818
https://doi.org/10.1007/s11465-018-0491-0
https://doi.org/10.1007/s11465-018-0491-0
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/3359993.3366646
https://doi.org/10.1145/3359993.3366646
https://doi.org/10.1109/JIOT.2020.2966402
https://doi.org/10.1109/JIOT.2020.2966402
https://doi.org/10.1007/s00170-019-04283-z
https://doi.org/10.1007/s00170-019-04283-z
https://github.com/thombashi/tcconfig
https://doi.org/10.1063/1.5121656
https://www.tcpdump.org/
https://doi.org/10.1007/978-3-319-42559-7_1
https://doi.org/10.1186/1472-6947-15-S5-S3
https://doi.org/10.1145/2976749.2978381
https://doi.org/10.17222/mit.2016.129
https://doi.org/10.1038/544023a
https://doi.org/10.1016/j.procir.2018.03.004
https://doi.org/10.1016/j.procir.2018.03.004
https://doi.org/10.1016/j.proeng.2014.03.041
https://doi.org/10.1016/j.proeng.2014.03.041

Privacy-Preserving Production Process Parameter Exchange ACSAC 2020, December 7–11, 2020, Austin, USA

[48] RichardMeyes, Hasan Tercan, Thomas Thiele, Alexander Krämer, Julian Heinisch,
Martin Liebenberg, Gerhard Hirt, Christian Hopmann, Gerhard Lakemeyer, To-
bias Meisen, and Sabina Jeschke. 2018. Interdisciplinary Data Driven Production
Process Analysis for the Internet of Production. Procedia Manufacturing 26 (2018),
1065–1076. https://doi.org/10.1016/j.promfg.2018.07.143

[49] Hamid Mozaffari and Amir Houmansadr. 2020. Heterogeneous Private Informa-
tion Retrieval. In Proceedings of the 28th Annual Network and Distributed System
Security Symposium (NDSS ’20). Internet Society.

[50] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. 2011. Can Ho-
momorphic Encryption Be Practical?. In Proceedings of the 3rd ACM Workshop
on Cloud Computing Security Workshop (CCSW ’11). ACM, 113–124. https:
//doi.org/10.1145/2046660.2046682

[51] Moni Naor, Benny Pinkas, and Benny Pinkas. 2001. Efficient Oblivious Transfer
Protocols. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’01). SIAM, 448–457.

[52] Tim A. Osswald, Lih-Sheng Turng, and Paul J. Gramann. 2007. Injection Molding
Handbook (2nd ed.). Carl Hanser.

[53] Sinno Jialin Pan and Qiang Yang. 2009. A Survey on Transfer Learning. IEEE
Transactions on Knowledge and Data Engineering 22, 10 (2009), 1345–1359. https:
//doi.org/10.1109/TKDE.2009.191

[54] Jan Pennekamp,Markus Dahlmanns, Lars Gleim, StefanDecker, and KlausWehrle.
2019. Security Considerations for Collaborations in an Industrial IoT-based Lab
of Labs. In Proceedings of the 3rd IEEE Global Conference on Internet of Things
(GCIoT ’19). IEEE. https://doi.org/10.1109/GCIoT47977.2019.9058413

[55] Jan Pennekamp, René Glebke, Martin Henze, Tobias Meisen, Christoph Quix,
Rihan Hai, Lars Gleim, Philipp Niemietz, Maximilian Rudack, Simon Knape,
Alexander Epple, Daniel Trauth, Uwe Vroomen, Thomas Bergs, Christian Brecher,
Andreas Bührig-Polaczek, Matthias Jarke, and Klaus Wehrle. 2019. Towards an
Infrastructure Enabling the Internet of Production. In Proceedings of the 2019 IEEE
International Conference on Industrial Cyber Physical Systems (ICPS ’19). IEEE,
31–37. https://doi.org/10.1109/ICPHYS.2019.8780276

[56] Jan Pennekamp, Martin Henze, Simo Schmidt, Philipp Niemietz, Marcel Fey,
Daniel Trauth, Thomas Bergs, Christian Brecher, and Klaus Wehrle. 2019.
Dataflow Challenges in an Internet of Production: A Security & Privacy Per-
spective. In Proceedings of the ACM Workshop on Cyber-Physical Systems Security
& Privacy (CPS-SPC ’19). ACM, 27–38. https://doi.org/10.1145/3338499.3357357

[57] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2014. Faster Private Set
Intersection Based on OT Extension. In Proceedings of the 23rd USENIX Conference
on Security Symposium (SEC ’14). USENIX Association, 797–812.

[58] PlasticsEurope. 2019. Geschäftsbericht 2018. Technical Report. PlasticsEurope
Deutschland e.V.

[59] Sinha Prashant. 2016. pybloomfiltermmap3. https://github.com/prashnts/
pybloomfiltermmap3.

[60] Michael O. Rabin. 2005. How To Exchange Secrets with Oblivious Transfer.
Cryptology ePrint Archive 2005/187.

[61] Fadillah Ramadhan and T. M. A. Ari Samadhi. 2016. Inter-Organizational Trust
and Knowledge Sharing Model Between Manufacturer and Supplier in the Au-
tomotive Industry. In Proceedings of the 2016 IEEE International Conference on
Industrial Engineering and Engineering Management (IEEM ’16). IEEE, 856–860.
https://doi.org/10.1109/IEEM.2016.7797998

[62] Shan Ren, Yingfeng Zhang, Yang Liu, Tomohiko Sakao, Donald Huisingh, and
Cecilia MVB Almeida. 2019. A comprehensive review of big data analytics
throughout product lifecycle to support sustainable smart manufacturing: A
framework, challenges and future research directions. Journal of Cleaner Produc-
tion 210 (2019), 1343–1365. https://doi.org/10.1016/j.jclepro.2018.11.025

[63] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.
IETF RFC 8446.

[64] Peter Rindal. 2016. libOTe: an efficient, portable, and easy to use Oblivious
Transfer Library. https://github.com/osu-crypto/libOTe.

[65] Peter Rindal. 2016. libPSI: A Private Set Intersection Library. https://github.com/
osu-crypto/libPSI.

[66] Peter Rindal and Mike Rosulek. 2017. Improved Private Set Intersection against
Malicious Adversaries. In Proceedings of the 36th Annual International Conference
on the Theory and Applications of Cryptographic Techniques (EUROCRYPT ’17).
Springer, 235–259. https://doi.org/10.1007/978-3-319-56620-7_9

[67] Peter Rindal andMike Rosulek. 2017. Malicious-Secure Private Set Intersection via
Dual Execution. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’17). ACM, 1229–1242. https://doi.org/10.
1145/3133956.3134044

[68] Armin Ronacher. 2010. Flask. https://palletsprojects.com/p/flask/.
[69] Ahmad-Reza Sadeghi, Christian Wachsmann, and Michael Waidner. 2015. Secu-

rity and Privacy Challenges in Industrial Internet of Things. In Proceedings of
the 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC ’15). ACM.
https://doi.org/10.1145/2744769.2747942

[70] Kamil Salikhov, Gustavo Sacomoto, and Gregory Kucherov. 2014. Using cascading
Bloom filters to improve the memory usage for de Brujin graphs. Algorithms for
Molecular Biology 9, 1 (2014). https://doi.org/10.1186/1748-7188-9-2

[71] Salvatore Sanfilippo. 2009. Redis. https://redis.io/.

[72] Christian Schröder. 2016. The Challenges of Industry 4.0 for Small and Medium-
sized Enterprises. Technical Report. Friedrich-Ebert-Stiftung.

[73] Roholamin Sedighi, Mohammad Saleh Meiabadi, and Mohammadreza Sedighi.
2017. Optimisation of gate location based on weld line in plastic injection mould-
ing using computer-aided engineering, artificial neural network, and genetic
algorithm. International Journal of Automotive and Mechanical Engineering 14, 3
(2017), 4419–4431. https://doi.org/10.15282/ijame.14.3.2017.3.0350

[74] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (1979), 612–613.
https://doi.org/10.1145/359168.359176

[75] F. Shi, Z. L. Lou, Y. Q. Zhang, and J. G. Lu. 2003. Optimisation of Plastic Injection
Moulding Process with Soft Computing. The International Journal of Advanced
Manufacturing Technology 21, 9 (2003), 656–661. https://doi.org/10.1007/s00170-
002-1374-3

[76] Ask Solem. 2009. Celery: Distributed Task Queue. http://www.celeryproject.org/.
[77] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. 2000. Practical Tech-

niques For Searches On Encrypted Data. In Proceedings of the 2000 IEEE Sym-
posium on Security and Privacy (SP ’00). IEEE, 44–55. https://doi.org/10.1109/
SECPRI.2000.848445

[78] João Sá Sousa, Cédric Lefebvre, Zhicong Huang, Jean Louis Raisaro, Carlos
Aguilar-Melchor, Marc-Olivier Killijian, and Jean-Pierre Hubaux. 2017. Efficient
and secure outsourcing of genomic data storage. BMC Medical Genomics 10
(Suppl 2) (2017). https://doi.org/10.1186/s12920-017-0275-0

[79] Roberto Spina. 2006. Optimisation of injection moulded parts by using ANN-PSO
approach. Journal of Achievements in Materials and Manufacturing Engineering
15, 1–2 (2006), 146–152.

[80] SQLite. 2000. SQLite. https://www.sqlite.org/.
[81] Wencheng Sun, Zhiping Cai, Yangyang Li, Fang Liu, Shengqun Fang, and Guoyan

Wang. 2018. Security and Privacy in the Medical Internet of Things: A Review.
Security and Communication Networks 2018 (2018). https://doi.org/10.1155/2018/
5978636

[82] Hasan Tercan, Alexandro Guajardo, Julian Heinisch, Thomas Thiele, Christian
Hopmann, and Tobias Meisen. 2018. Transfer-Learning: Bridging the Gap be-
tween Real and Simulation Data for Machine Learning in Injection Molding.
Procedia CIRP 72 (2018), 185–190. https://doi.org/10.1016/j.procir.2018.03.087

[83] Kuo-Ming Tsai and Hao-Jhih Luo. 2015. Comparison of injection molding process
windows for plastic lens established by artificial neural network and response
surface methodology. The International Journal of Advanced Manufacturing
Technology 77, 9-12 (2015), 1599–1611. https://doi.org/10.1007/s00170-014-6366-
6

[84] Kuo-Ming Tsai and Hao-Jhih Luo. 2017. An inverse model for injection molding
of optical lens using artificial neural network coupled with genetic algorithm.
Journal of Intelligent Manufacturing 28, 2 (2017), 473–487. https://doi.org/10.
1007/s10845-014-0999-z

[85] VDI Verein Deutscher Ingenieure e.V. 2020. VDI – The Association of German
Engineers. https://www.vdi.de/en/home.

[86] VDMA e. V. (Mechanical Engineering Industry Association). 2015. The VDMA –
VDMA. https://www.vdma.org/en/.

[87] Karl Weiss, Taghi M. Khoshgoftaar, and DingDing Wang. 2016. A survey of
transfer learning. Journal of Big Data 3, 1 (2016), 9. https://doi.org/10.1186/s40537-
016-0043-6

[88] Katinka Wolter and Philipp Reinecke. 2010. Performance and Security Tradeoff.
Proceedings of the 10th International School on Formal Methods for the Design of
Computer, Communication and Software Systems (SFM ’10) 6154 (2010), 135–167.
https://doi.org/10.1007/978-3-642-13678-8_4

[89] Andrew C. Yao. 1982. Protocols For Secure Computations. In Proceedings of the
23rd Annual Symposium on Foundations of Computer Science (SFCS ’82). IEEE,
160–164. https://doi.org/10.1109/SFCS.1982.38

[90] Prasad K. D. V. Yarlagadda. 2001. Prediction of processing parameters for injection
moulding by using a hybrid neural network. Proceedings of the Institution of
Mechanical Engineers, Part B: Journal of Engineering Manufacture 215, 10 (2001),
1465–1470. https://doi.org/10.1243/0954405011519097

[91] zafaco GmbH. 2020. Jahresbericht 2018/19. Technical Report. Breitbandmessung.
[92] Junhong Zhang, Jian Wang, Jiewei Lin, Qian Guo, Kongwu Chen, and Liang

Ma. 2016. Multiobjective optimization of injection molding process parameters
based on Opt LHD, EBFNN, and MOPSO. The International Journal of Advanced
Manufacturing Technology 85, 9–12 (2016), 2857–2872. https://doi.org/10.1007/
s00170-015-8100-4

[93] Yuchen Zhang, Wenrui Dai, Xiaoqian Jiang, Hongkai Xiong, and Shuang Wang.
2015. FORESEE: Fully Outsourced secuRe gEnome Study basEd on homomorphic
Encryption. BMC Medical Informatics and Decision Making 15 (Suppl 5) (2015).
https://doi.org/10.1186/1472-6947-15-S5-S3

[94] Xu Zheng and Zhipeng Cai. 2020. Privacy-Preserved Data Sharing Towards Mul-
tiple Parties in Industrial IoTs. IEEE Journal on Selected Areas in Communications
38, 5 (2020), 968–979. https://doi.org/10.1109/JSAC.2020.2980802

[95] Jan Henrik Ziegeldorf, Jan Pennekamp, David Hellmanns, Felix Schwinger, Ike
Kunze, Martin Henze, Jens Hiller, Roman Matzutt, and Klaus Wehrle. 2017.
BLOOM: BLoom filter based Oblivious Outsourced Matchings. BMC Medical
Genomics 10 (Suppl 2) (2017). https://doi.org/10.1186/s12920-017-0277-y

https://doi.org/10.1016/j.promfg.2018.07.143
https://doi.org/10.1145/2046660.2046682
https://doi.org/10.1145/2046660.2046682
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/GCIoT47977.2019.9058413
https://doi.org/10.1109/ICPHYS.2019.8780276
https://doi.org/10.1145/3338499.3357357
https://github.com/prashnts/pybloomfiltermmap3
https://github.com/prashnts/pybloomfiltermmap3
https://doi.org/10.1109/IEEM.2016.7797998
https://doi.org/10.1016/j.jclepro.2018.11.025
https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libPSI
https://github.com/osu-crypto/libPSI
https://doi.org/10.1007/978-3-319-56620-7_9
https://doi.org/10.1145/3133956.3134044
https://doi.org/10.1145/3133956.3134044
https://palletsprojects.com/p/flask/
https://doi.org/10.1145/2744769.2747942
https://doi.org/10.1186/1748-7188-9-2
https://redis.io/
https://doi.org/10.15282/ijame.14.3.2017.3.0350
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/s00170-002-1374-3
https://doi.org/10.1007/s00170-002-1374-3
http://www.celeryproject.org/
https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1186/s12920-017-0275-0
https://www.sqlite.org/
https://doi.org/10.1155/2018/5978636
https://doi.org/10.1155/2018/5978636
https://doi.org/10.1016/j.procir.2018.03.087
https://doi.org/10.1007/s00170-014-6366-6
https://doi.org/10.1007/s00170-014-6366-6
https://doi.org/10.1007/s10845-014-0999-z
https://doi.org/10.1007/s10845-014-0999-z
https://www.vdi.de/en/home
https://www.vdma.org/en/
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1007/978-3-642-13678-8_4
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1243/0954405011519097
https://doi.org/10.1007/s00170-015-8100-4
https://doi.org/10.1007/s00170-015-8100-4
https://doi.org/10.1186/1472-6947-15-S5-S3
https://doi.org/10.1109/JSAC.2020.2980802
https://doi.org/10.1186/s12920-017-0277-y

ACSAC 2020, December 7–11, 2020, Austin, USA Pennekamp et al.

A NOTATION DETAILS
In this section, we extend the description of our notation introduced
in Section 5.1. First, we elaborate on our implemented rounding
function in Section A.1. Second, we present a basic example of a
similarity metric used as part of our evaluations in Section A.2.

A.1 Use Case-Specific Rounding
As described in Section 5.1, we apply a use case-specific rounding
function 𝑟 (𝑥𝑖) = 𝑥 ′𝑖 to the input parameters 𝑥𝑖 before computing the
index 𝑖𝑑𝑥 ′ . Our rounding approach resembles a binning of related
records, i.e., related records are rounded to same value such that
their indices are identical. The rounding depends on the absolute
value of the input parameter to achieve a granularity adaption
because smaller changes in smaller values are expected to have a
larger influence than the same absolute change on a larger value. For
example, cooling times can easily be as low as 5 s, while common
melt temperatures for regularly-used polypropylene polymer are
above 200 °C. Here, the absolute difference between the values is far
more than a magnitude, demanding a use case-specific rounding.
In theory, any rounding could be implemented and used as well.

We demonstrate our used rounding approach based on such input
parameters (1.21, 22.22, 333.33). Our defined function 𝑟 rounds each
input parameter 𝑥𝑖 to a certain number of digits, here exemplified
with 2 for all inputs, starting from the digit with the highest potency.
This rounding yields the identifying parameters (1.2, 22.0, 330.0).
This example demonstrates that the rounding of 𝑥1 uses a finer
granularity than 𝑟 (𝑥3) due to its smaller absolute value.

A.2 A Basic Similarity Metric
To illustrate the computation of the candidate set 𝑆 = 𝑠 (𝑞), we con-
sider the target record (1.2, 22.0, 330.0), a rounding to two digits,
and a metric 𝑠 that computes the 10 % offset for each identifying
parameter. This metric yields 1.1, 1.2, and 1.3 as possible values
for the first parameter because the absolute offset is 0.12 such that
1.0 and 1.4 are not covered. For the second parameter, the metric
computes 5 possible values and 7 for the third parameter. Hence,
the candidate set consists of 3 · 5 · 7 = 105 candidates in total.

B SUPPLEMENTAL PERFORMANCE RESULTS
We include additional supplemental evaluations to substantiate the
made feasibility claims and to justify our parameter choices. We
now present the results of theses supporting measurements.

B.1 Bloom Filter

0 0.2 Bil 0.4 Bil 0.6 Bil 0.8 Bil 1.0 Bil
Capacity [#]

0

20

40

60

80

Qu
er

y
Ti

m
e

[s
]

(a) The capacity of the Bloom fil-
ter has only a limited impact on
the measured query time.

10 1 10 3 10 6 10 9 10 12 10 15 10 18

FP Rate

0

10

20

30

40

Qu
er

y
Ti

m
e

[s
]

(b) The FP rate only has a neg-
ligible influence on the time re-
quired to query the Bloom filter.

Figure 12: The capacity has only a small influence on the
query time, while the FP rate has nearly no influence at all.

Apart from the Bloom filter size, we also measured the influence
of the capacity and configured FP rate on the insertion or query

0 0.2 Bil 0.4 Bil 0.6 Bil 0.8 Bil 1.0 Bil
Queries [#]

0

2

4

6

Qu
er

y
Ti

m
e

[m
in

]

(a) The query time depends lin-
early on the number of per-
formed queries.

0 0.2 Bil 0.4 Bil 0.6 Bil 0.8 Bil 1.0 Bil
Inserted Elements [#]

0

100

200

In
se

rt
Ti

m
e

[m
in

]

(b) The insertion time depends
linearly on the number of in-
serted elements.

Figure 13: Both the number of inserted and queried ele-
ments have a linear influence on the corresponding time.

times for a certain number of elements. Furthermore, we measured
the influence of the number of queried elements on the query time.
If not stated otherwise, we set a FP rate of 220, a capacity of 100Mio.
elements, inserted as many elements as configured by the capacity
and queried a total of 100Mio. elements. While Figure 12 illustrates
the influence of capacity and FP rate on the query time, Figure 13a
details the influence of the number of queried elements. Both ca-
pacity and FP rate only have a limited influence on the time needed
to query 100Mio. elements. As expected, for a fixed capacity and
FP rate, the number of queried elements influences the process-
ing linearly (cf. Figure 13a). By design, querying is embarrassingly
parallel as the individual queries are independent of each other.

0 0.2 Bil 0.4 Bil 0.6 Bil 0.8 Bil 1.0 Bil
Capacity [#]

0

100

200

300

400

In
se

rt
Ti

m
e

[m
in

]

(a) Even huge sets with a billion
elements can be inserted into a
Bloom filter in under 6h.

10 1 10 3 10 6 10 9 10 12 10 15 10 18

FP Rate

0

5

10

15

20

In
se

rt
Ti

m
e

[m
in

]

(b) An exponential decrease of
the FP rate yields an approx. lin-
early increased insertion time.

Figure 14: By design, a larger capacity and a lower false pos-
itive (FP) rate influence the insertion time of a Bloom filter.

The time required for the insertion scales linearly with the num-
ber of inserted elements, for a fixed capacity and FP rate (cf. Fig-
ure 13a). In Figure 14, we observe that the insertion of millions of
elements takes several hours with our experimental setup. However,
concerning our design, this time is tolerable because insertions are
one-time activities, which are not time-critical. The insertion likely
occurs with delay as data providers do not offload their records
simultaneously. Moreover, our measurements indicate that the in-
sert time increases approximately linearly with an exponentially
decreasing FP rate. Accordingly, very low false positive rates can
be configured while maintaining reasonable insertion times.

B.2 Oblivious Transfer
We also conducted additional measurements for our second building
block. As detailed in Section 7.2.2, we rely on the semi-honest OT
protocol KKRT16 [42] for all measurements, which is the fastest
semi-honest OT protocol supported by libOTe [64]. Two parameters
influence the OT runtime and memory usage by design: Both the set
size (cf. Figure 15) and the number of OT extensions (cf. Figure 16)
have a linear correlation. All measured runtime stay below 2min in
thesemeasurements, however, as discussed in Section 7.2.2, network
conditions have a major influence on the runtime as well. With
decent network conditions, our measurements indicate that even

Privacy-Preserving Production Process Parameter Exchange ACSAC 2020, December 7–11, 2020, Austin, USA

220 221 222 2233 Mio 5 Mio 7 Mio 10 Mio

Set Size [#]

0

10

20

30

40

50

60

Ti
m

e
[s

]

0

1

2

3

4

5

6

RA
M

 U
sa

ge
 [G

B]

Runtime Client Server

Figure 15: The OT set size linearly influences the runtime
and memory usage. We measure 10 OT extensions each.

0 20 40 60 80 100 120 140 160 180 200
Number of OT Extensions [#]

0

20

40

60

Ti
m

e
[s

]

0

1

2

3

4

5

RA
M

 U
sa

ge
 [G

B]

Runtime Client Server

Figure 16:With a set size of 220, the number of performedOT
extensions linearly influences the runtime and RAM usage.

200 key retrievals via OT are feasible for a set size of 220. These
numbers are relevant when offloading millions of records overall
and when retrieving tens or even hundreds of keys per client.

B.3 Data Provision
In addition to the building block evaluations, we performed mea-
surements of the data provision phase for each setting. Figure 17
illustrates the influence of the record length. For this measurement,
we uploaded 100 random records while varying the number of in-
cluded parameters 𝑚. The key retrieval remains constant as the
same encryption keys are retrieved for each measurement. The
length of the records does not have a significant influence on the
runtime as the key retrieval dominates the data provision.

In Figure 18, we include the data provision phase of our injection
molding evaluation (cf. Section 7.4). We ran two evaluations with a
varying share of uploaded parameters. For the first measurement,
shown by the left-sided bars, we chose to upload all parameters
with the same identifier before considering the data belonging to a
different geometry. Here, the key retrieval overhead increases with
a larger number of uploaded records because 77 records have the
same index and therefore need the same encryption key. Therefore,
the number of retrieved keys only increases when parameters with
distinct identifiers are offloaded. For the second measurement, we
selected the records uniform at random for each share. Here, already
the first upload (10 %), equaling 462 records, has a high probability
of containing one record of each of the 60 groups, such that all keys
are required. Thus, the key retrieval times remain nearly constant.

Moreover, the figure shows that the key retrieval dominates the
data provision as for our setting with random records in Section 7.3.
The entire provision phase takes less than 12 s, even if all records
are uploaded at once. Consequentially, the data provision is feasible
even in settings where providers upload large amounts of records.

C PPE: PSI-BASED PARAMETER EXCHANGE
We proposed PPE (cf. Section 8.2.1) for settings with metrics that
yield small candidate sets and require increased provider privacy.

100 200 300 400 500 600 700 800 900 1000
Record Length [#]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ti
m

e
[s

]

Hash Key R. Key R. (OT) OT TLS Encryption Sending

Figure 17: The key retrieval dominates the runtime of the
data provision, and the record size has a negligible impact.

10 20 30 40 50 60 70 80 90 100
Uploaded Records [%]

0.0

2.5

5.0

7.5

10.0

12.5

Ti
m

e
[s

]

Hash Key R. Key R. (OT) OT TLS Encryption Sending

Figure 18: Our real-world injection molding use case also
shows that the key retrieval dominates the data provision.

C.1 PPE Protocol Differences
PPE provides improved provider privacy (G1) by replacing the
Bloom filter-based matching in the matching phase with a PSI (cf.
Section 4). As shown in Figure 19, the other parts of the BPE proto-
col remain unchanged. Due to the PSI, the client cannot gain any
knowledge about the server’s set except for the matching elements.
The client utilizes the computed candidate set 𝑆 , and the server
takes the indices of all stored records as their sets for the PSI. Since
a PSI further requires indices to perform the intersection on (2128
in our case and larger than the chosen OT set size of 𝐾 = 220), we
introduce a third indexing 𝐿 with 𝐾 ⊂ 𝐿 ⊂ 𝐻 , and calculate the
respective truncation for 𝐿 using the values inserted in the sets.

Although, in theory, the PSI would support the intersection
of sets with a size of 2128, to achieve computational feasibility,
the number of elements in the set must be reduced. Notably, in
contrast to OT, the input indices in 𝐿 are not limited by the PSI
set size reducing the chance of clients guessing matching indices
and further, due to computational effort, preventing clients from
performing PSI operations with an extensive number of elements
in their candidate set (e.g., to request all records from the server).
Even though the size of 𝑆 depends on the client and its chosen
metric, we expect that the server set is unlikely to exceed 100Mio.
elements (cf. Section 7.2.1), and thus, we fix the PSI set size to 220.

C.2 Private Set Intersection Performance
As for the oblivious transfers (cf. Section 7.2.2), we rely on the semi-
honest PSI protocol KKRT16 [42], which is the fastest protocol
supported by libPSI [65]. The main influence on the runtime of
a PSI protocol is the used PSI set size, which scales linearly with
the runtime and memory usage (cf. Figure 20). Due to the linear
influence on the runtime, the maximal supportable PSI set size
for PPE depends on the available memory at the storage server.
Furthermore, the storage server must potentially serve multiple
clients at once, i.e., offer a PSI sender instance for each client. Hence,
defining the maximum supported PSI set size in accordance to the
available memory of the storage server is unreasonable. For the

ACSAC 2020, December 7–11, 2020, Austin, USA Pennekamp et al.

Client

I:
D

at
a

P
ro

vi
si

on
II:

 M
at

ch
in

g
III

: R
ec

or
d

R
.

II.7: Matching (PSI)

II.5: Hash Key Retrieval

III.8: Key Retrieval (OT)

III.9: Record Retrieval
Payment

II.6: Prepare PSI

III.10: Decryption

Key Server Storage Server Data Provider(s)
I.1: Hash Key Retrieval (R.)

I.2: Key Retrieval (OT)

I.3: Encryption

I.4: Sending

For readability, we omit
authentication and reg-

istration here. We include
it in our implementation.

Figure 19: For PPE, we replace the Bloom filter-basedmatch-
ing with a PSI, while the remaining protocol is unchanged.
chosen set size of 220 (cf. Appendix C.1), approximately 0.6 GB are
utilized at maximum, so that the server can interact with multiple
clients simultaneously. Moreover, the PSI protocol runtime is also
influenced by network conditions, i.e., both latency and bandwidth
have a major impact (cf. Figure 21). We limited the bandwidth
asynchronously with a ratio of 1/10 to mimic common broadband
connections. The labels in Figure 21a again refer to the server-client
direction. The figure highlights that, especially, a low bandwidth has
a major impact on the performance. However, even for a restricted
bandwidth with 6MBit/s, the execution time for a PSI with a set size
of 1Mio. elements stays around 45min, which is still acceptable as
our scenario tolerates the combined matching and record retrieval
to take several days. As stated for OTs, PSI protocols also exhibit a
trade-off between communication and computation overhead [42].
Accordingly, the used protocol can be adapted to specific needs.

220 221 222 223 2246 Mio 10 Mio 15 Mio 20 Mio

PSI Set Size [#]

0

20

40

60

80

Ti
m

e
[s

]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

RA
M

 U
sa

ge
 [G

B]

Runtime Client Server

Figure 20: Both runtime and required memory increase ap-
proximately linearly with an increasing PSI set size.

0 0.2 Mio 0.4 Mio 0.6 Mio 0.8 Mio 1.0 Mio
PSI Setsize [#]

0
1
2
3
4
5

Ti
m

e
[m

in
] 6MBit/s

 50MBit/s
100MBit/s
Unlimited

(a) A reduced bandwidth affects
the large transmissions of PSIs.

0 2 Mio 4 Mio 6 Mio 8 Mio 10 Mio
PSI Setsize [#]

0
1
2
3
4
5

Ti
m

e
[s

] 300ms
250ms
200ms

150ms
100ms

 50ms
 0ms

(b) Latency also impacts the com-
munication overhead of PSIs.

Figure 21: Both a decreased bandwidth and an increased la-
tency negatively influence the linear coefficient when con-
sidering the PSI set size and the overall processing time.

C.3 PPE Full Application Performance
In addition to the building blocks, we also measured the perfor-
mance of PPE. Given that the data provision and record retrieval
remain unchanged, the same considerations as described in Sec-
tion 7.3 apply. Figures 11 and 22 compare the matching and record

Hash Key R. Bloom R. Matching PSI Prep. PSI Exec. Key R. (OT) Record R. Decryption
Phase

0

10

20

30

40

50

60

Ti
m

e
[s

]

|S
|

0.
3

M
io

.

|S
|

0.
3

M
io

.

Standard BPE PSI-based PPE
Random-0.3% TLS

Figure 22: For small candidate sets, both BPE’s and PPE’s
matching phases yield similar runtimes.

Hash Key R. Bloom R. Matching PSI Prep. PSI Exec. Key R. (OT) Record R. Decryption
Phase

0

20

40

60

80

100

120

Ti
m

e
[s

]

|S
|

1
M

io
.

|S
|

1
M

io
.

Standard BPE PSI-based PPE
IM-2% TLS

Figure 23: While the PSI execution time stays constant (cf.
Figure 22), the preparation time increases with the size of 𝑆 .

retrieval phases to BPE. The two figures underline that the per-
formance of BPE and PPE is comparable. In the given setting, the
main overhead is caused by the preparation of the PSI. This phase is
responsible for creating a duplicate free candidate set, which is used
as the receiver set for the PSI. However, as shown in Appendix C.2,
the PSI execution time increases if larger set sizes are used.

We could only perform an evaluation of PPE with IM-2% from
Section 7.4 because the utilized similarity metric for IM-2.5% yields
a candidate set (143Mio. elements) that is not feasible for PPE as
it exceeds our maximally supported set size of 220. This situation
illustrates the main drawback of the PPE design and explains why
we favor BPE. While PPE can offer an increased level of provider
privacy for privacy cautious providers, it is not applicable in general.

The evaluation of IM-2% with the PPE design (cf. Figure 23)
shows that the runtime of the PSI preparation phase increases for
larger candidate sets, while the PSI execution takes approximately
the same time. Moreover, the measurement implies that for larger
candidate sets, the PSI-based matching produces significantly more
overhead than the Bloom filter-based matching of the BPE variant.

In contrast, our second use case, as described in Section 7.5,
results in significantly smaller candidate sets such that PPE is appli-
cable for both our evaluated metrics. Due to the small candidate sets
(cf. Figure 10), i.e., |𝑆 | = 11 for MT-Material, and |𝑆 | = 701 for MT-
Diameter , the PSI preparation that dominated our first evaluations
(cf. Figure 11 and 23) only produces negligible overhead. Instead,
the PSI execution accounts for the main runtime in the PSI-based
matching. Here, PPE even outperforms our BPE design. The key re-
trieval times differ due to the number of matched and subsequently
retrieved records (10 for MT-Material vs. 6 for MT-Diameter).

In conclusion, the evaluation of the PPE design variant shows
that the variant is not universally applicable due to the restriction
of the candidate set by the PSI set size and the overhead produced
by the PSI preparation phase. However, for use cases that yield
small candidate sets, such as our considered machine tool setting
from Section 7.5.1, PPE can even outperform BPE while providing
increased provider privacy. Accordingly, the choice of which design
variant is best-suited depends on the given use case.

	Abstract
	1 Introduction
	2 Scenario
	2.1 Transfer Learning for Injection Molding
	2.2 Production Process Parameter Exchange
	2.3 Scenario Challenges

	3 Design Goals
	4 Preliminaries
	5 BPE: A Bloom Filter-based Exchange
	5.1 Notation for the Exchange of Parameters
	5.2 Design Overview
	5.3 Entities and Trust Assumptions
	5.4 Protocol Sequence

	6 Real-World Realization
	6.1 Exchange Platform Operators
	6.2 Implementation

	7 Evaluation of BPE
	7.1 Experimental Setup
	7.2 Performance of BPE's Used Building Blocks
	7.3 Combined Performance of BPE
	7.4 Real-World Performance Measurements
	7.5 Universally Applied Parameter Exchange

	8 Practical Privacy Improvements
	8.1 Security Discussion
	8.2 Design Variants

	9 Related Work
	10 Conclusion
	Acknowledgments
	References
	A Notation Details
	A.1 Use Case-Specific Rounding
	A.2 A Basic Similarity Metric

	B Supplemental Performance Results
	B.1 Bloom Filter
	B.2 Oblivious Transfer
	B.3 Data Provision

	C PPE: PSI-based Parameter Exchange
	C.1 PPE Protocol Differences
	C.2 Private Set Intersection Performance
	C.3 PPE Full Application Performance

